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ABSTRACT

McLain, Dennis Robert. Ph.D., University of California,
Berkeley, December 1984. A SYSTEMS APPROACH TO THE AERO-
MEDICAL AIRCRAFT ROUTING PROBLEM USING A COMPUTER-BASED
MODEL. Chairman: C. West Churchman.

This research concerns transporting medical patients on

specially-equipped aircraft from one medical facility to

another, primarily to provide them treatment not available

at the first facility. In addition to finding improved

routing methods so that patients can be moved as directly

and expeditiously as possible, we address other important

* issues by means of a systems approach, such as the limited

numbers of aircraft and crews that restrict the ability of

the system to provide direct or even same-day service.

The most extensive aeromedical system, operated by the

US Department of Defense (DOD), evolved from World War II

and Vietnam War casualty evacuation. It has two distinct

and overlapping roles, preparing for wartime casualty move-

ment, and the peacetime transportation of active duty mili-

rary and other eligible clients. Of the world-wide DOD
6

network, we examined only the continental US portion, and

4' we were primarily concerned with its peacetime operation.

The purpose of the thesis is to design an aeromedir'ilI

planning system that will schedule weekly regional service,

and produce daily routings. Historical patient movement

data provides information that can be used in regional

service planning. At the root of routing and sequencing is



2

the combinatorially difficult problem of finding solutions

that satisfy the ordering restriction that patients be

picked up before they are delivered. Routing problems

which require both pickup and delivery service are commonly

called many-to-many, two-ended service problems. We

present solution methods for both multiple depot and

multiple aircraft many-to-many problems.

Aeromedical service is demand-responsive; the decision

to move a patient and the choice of a destination are made

a priori and independent of the flight planning process.

Both advance (or subscriber) and immediate (dynamic)

service requests are generated. The DOD system is similar

in many respects to urban paratransit systems for the

elderly and handicapped, called 'Dial-a-Ride' systems, but

differs in that patients are moved according to their

medical condition. Patient deliveries are not made to meet

scheduled appointments, so there are no service time

constraints. Other differences stem from the use of air-

planes instead of ground vehicles.

In developing a series of planning models, we encoun-

tered increasingly difficult problems, particularly in

.incorporating the many linkages that exist among organ.-

• zational subsystems. Future research is needed to advance

the theory of mathematical programming to permit the

development of models that adequately represent the entire

0system, an elusive but worthwhile ideal. to seek.

4..
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CHAPTER I

INTRODUCTION

Although modern transportation systems have become

increasingly complex and technologically sophisticated,

their fundamental function remains the same: to move some-

thing from one location to another. We move ourselves and

our goods and services, economists say, because hat we

want is not always where we want it when we want it. When

transportation increases the capacity of goods and services

to satisfy human wants, by resolving these problems of time

and place, they say that our utility has increased.' When

we improve our transportation systems so that we are able

to both increase utility and decrease the adverse effects

of doing so, we say that we have progressed.

The principal focus of this thesis is on a medical

transportation system that uses specially equipped and mod-

itied aircraft to resolve certain time-and-place disutil-

'ties that arise in the treatment of patients by the US

Department of Defense (DOD) Military Health Services Sys-

tem. With hospitals and clinics located at many, widely

dispersed DOD installations and eight million potentiai

beneficiaries, the economics of health care delivery,

shortages of medical specialists and equipment. and the

need for extensive training programs for wartime prepa-

ration have forced DOD to consolidate and specialize its
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facilities. As a result, DOD cannot deliver adequate

health service in all specialties at every installation.

Air transportation greatly alleviates the resulting

health service distribution problems. The time utility of

medical treatment is obviously greatest at the time an

injury or illness occurs, and declines as treatment is

delayed. Air transportation greatly reduces the time, over

other modes, to transport patients to medical facilities

for urgently needed care. In some instances, the distance

or terrain over which patients must be moved precludes

* travel on any other type of vehicle. Alternatively, air-

craft can rapidly move treatment teams and their equipment

to victims too critically injured or ill to be moved. In

terms of place utility, air transportation is unques-

tionably important in linking DOD facilities in 35 coun-

tries, and in permitting the specialization and aglomer-

ation of facilities that provide significant economies of

Gcale, achieve desired staff training goals, and allow the

elimination of uneconomical facilities.

The DOD patient transportation problem is considerably

more complex than finding the fastest means to mVe

patients from one point to another. Given the distribut'or

of treatment resource:3 and individual patient treatment

;. needs, each patient should be transported to his desti-

nation medical facility as expeditiously as possible. How-

0ever, given a limited number of aircraft, flight crews, and
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-' \ specially trained medical teams, a mass transportation

approach, rather than air taxi service for each individual

patient, must be used in order to move 100 or more patients

each day. Unlike many mass transportation systems, each

individual patient orgin and destination must be served,

wnich precludes using a fixed route network. Despite the

difficult plannng problems that result, the system moves

more .han 70,000 patients each year.

But, the problems associated with operating modern jet

aircraft, particularly the escalating factor costs of fuel,

flight and medical crew salaries and training, and mainte-

nance manpower and materiel, continually challenge system

• ' managers to maintain positive utility differentials. Des-

oite their high initial costs, new aircraft that fly

"faster, improve comfort, carry more patients, and reduce

iei consumption can greatly improve patient service and

-educe operating costs. For example, McDonnell Douglas,

danufacturer of the DC-9 aircraft currently used by the DOD

medical air transportation system, claims that its latest

DC-9 Super 80 model is considerably quieter, flies greater

distances, and uses 30 per cent Less fuel than the model

now in use. [MCDO84] Alternatively, 'retrofitting' exis-

ting aircraft with more fuel-efficient engines, electronic

fuel management equipment, and structural modifications can

achieve comparable improvements with smaller capital

outlays. Increasing fuel-carrying capacity, reducing fuel
'.. "[ o., re ci g f e

0 .i
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consumption, and improving aircraft reliability can reduce

or eliminate ground servicing, maintenance delays between

flights and aircraft out-of-commission time. Besides

improving service to individual patients, these changes can

increase the system's capability, by effectively increasing

aircraft fleet capacity without changing fleet size.

Technological solutions such as these, then, are

indisputably important in achieving progress.

But it is entirely possible, as Schon contends in Tech-

nology and Change [SCHO67], that we have come to expect

technology, almost as a matter of blind faith, to provide
the means to progress, to the point that organizations such

as DOD routinely devise plans for new aircraft or improve-

ments to existing designs that call for materials,

- construction methods, and components that we haven't even

"nvented yet. That faith has not always been upheld. But

-ven when i has, successful technological solutions may

biind us to other problems and solutions because of one

overriding reason: we fail to consider the whole system..

S~and focus on just its engineering or technological aspects.

~ In this study, we examined the DOD medical transpor-

tation problem from a systems perspective. As our focus

'-.9 3hifted from improvinq transportation technology as the

sole means for achieving progress, to such concerns as the

nature, causes, and structure of patient movement, and the

functioning of the larger health care delivery system



5

:, within which this transportation service operates, we

identified a numbe: of significant, non-technological pro-

blems. For example, we observed that because of the their

high costs, DOD can afford few aircraft relative to the

number of patients to be served. Because of this, the most

basic medical air transportation problem is to determine

zhe order in which each aircraft stops to pick up and deli-

" ver patients. On further examination, we found that this

P. didfficult combinatorial problem, if not solved adequately,

can easily negate the value of using even the most techno-

* logically efficient aircraft.

As we expanded our framework from single aircraft

, routing problems with few individual patient movements, to

moving a significant number of patients with a fleet of

aircraft, we discovered additional problems. Multiple air-

craft create the so-called partitioning problem, cf

.eciding to which aircraft to assign patients. And, we

i:scovered that chosing where each aircraft ended its route

sign ficantiy effected system operation the following day.

So too did selecting which regions of the United States to

serve on a given day, and which ones not to serve.

* Further examination revealed tnat, when the spatia.

separation of patient Locations was coupied with the

limited number of aircraft and daily operating hours, we

could not always move every patient from his origin

"-: directly (or even indirectly, on the same day) to his

0
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desired destination. This required us to develop effective

service criteria,2 rules for 'storino' patients overnight

at enroute locations, and schemes for determining not just

the sequence of stops on one flight, but interrelated

sequences on several flights to final patient destinations.

Otherwise, patients experienced excessive times waiting at

tneir origins and made unnecessary enroute stops.

Looking beyond the aeromedica: subsystem to the larger

nealth care delivery system within which it operates, we

% found that these problems are in turn compounded by insti-

St utional idiosyncrasies, structural characteristics of

patient movement, and other factors. For example, we found

that rules and operating policies bias the selection of

patient destinations; facilities operated by the same mili-

tary branch are favored over others geographically closer.

Patient service tends to be demand-responsive, owing to the

unpredictable nature of medical needs and to the policy of

-Int rigidly scheduling aircraft routes. The relative

concentration of medical services at a few large install-

* ations, and the myriad origins that stem from a number of

uncoordinated health benefit programs, produced a many-to-

- fewer, origin-to-destination movement s-ruture.

By using a systems approach, then, we attempted to

treat the aeromedical transportation problem as compre-

hensively as possible, rathe- than simply isolating one or

two problem areas. We found, as others have from the time
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of Anaxagoras, that a complex system such as this is not

Secomoosable no less complex subsystems for two principal

reasons. First, the subsystem problems are diff.'cult in

:neir own right. And more significantly, linkages between

sooproolems directly determine whole system performance,

and cannot be ignored, nor easily handled. Our system

model attempts to explicitly include linkages between sub-

systems. Admittedly, in the end we only solved a few tech-

oica. aeromedical management problems; we hope that this

Lnves iqation provides a framework and starting point for

ohners to attack the problems we did not solve.

-.3 Problems Addressed. In this study our principal concern

- the aeromedica! transportation problem, wiich at its

highest level of abstraction is to:

Given a set of n patients located at origin
hospitals, and a fleet of m aircraft, determine
the 'best' set of routes that will transport them
to destination medical facilities, subject to
environmental and operating constraints.

'e fi st developed a conceptual model of the DOD medical

: r transportation system. Perhaps the most difficult pro-

biem Ln doing so was to (1) identify the real objectives of

the system, and (2) choose adequate measures of performanc-

_n achievinq those goals. We found tne system justif-ed

largely Ln terms of one objective, preparation for wartime

operation, and its performance measured primarily in te-ms

of a health benefit qoal. 4 These problems were exacerbated

oy two traits common to public sector organizations:

I
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insulation from market forces, and a lack of private sector

motives such as cost minimization or profit maximization.

With an understandinq of the purpose and functioning of

the system, we then addressed the nature of patient move-

ment. Specifically, we used various analytical methods to

determine movement structure and patterns. The hierar-

chical, regional structure, and two-tiered flow patterns

that we found are the main foundations of our system model.

-The third problem we addressed is the design of an

aeromedical transportation planning subsystem. Churchman

notes that a planning subsystem

has to deal with the generation of plans for the
system. ... The management sets the component
goals, allocates the resources,and controls sys-
tem performance. Not only does the management of
a system generate the plans of a system, but it
also must insure that the plans are being carried
out in accordance with its original ideas. This
activity is often called "control". However,
control does not only mean the examination of
whether plans are being carried out correctly; it
also implies an evaluation of plans and conse-
quently, a change of plans. [CHUR69]

Aeromedical transportation plans take the form of routes tc
S

pick up and deliver patients, and weekly and monthly sched-

ules specifying which regions of the country will be served

each day. The planning problem involves three related anc,

difficult questions, which we investigated.

The optimal routing problem is to find the best set of

* daily regional and interregional routes to :service patient"S°
0
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,.'[* .,*., origins, destinations, and overnight stopover points called

aeromedical staging facilities. The two critical questions

ro be answered are (i) which nodes will be visited, and

(ii) in what order should they be visited. Routing pro-

olems with origin-to-destination service requirements are

common in practice, but adequate solution methods are not,

which forced us to find new techniques.

In the routing design problem, we must determine for

several operating periods which major stops to visit on

which days, without regard to visit order. Optimal routing4,

and routing design are closely related; daily routes are

particularly sensitive to the first and last stops of each

- .- .-'. aircraft, which the routing design determines.

According to Churchman, aeromedical transportation man-

agers should, as part of their control activity, see to the

construction of management information systems
.. (MIS) that will record the relevant information

=or decision-making purposes and specifically
will tell the richest story about the use of
resources, including lost opportunities. [CHUR69]

0 lo design such an MIS we followed the premise that the data

it needs to record is specified by the routing and routing

design decision models it needs to sLIpport. We investi

gated ways to integrate data and routing decisions into a

resource allocation model. The model we derived utilizes a

method of roordinating the allocation of resources

. 7 (principally aircraft and crews) to improve client service.
.-

J
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1.2 Major Contributions. The model we developed makes two

contributions to transportation management theory:

(1) We will show that a theoretical model of
resource allocation can be used to suggest daily
schedules and changes to them, and to indicate
improvements in longer-term resource use. Because
rational models such as these are sensitive to
improper parameter values and misspecifications
of or changes in problem characteristics, we will
demonstrate that control information derived from
experience can be used to improve system perfor-
mance. This enables the rational model to adapt
to a dynamic environment, which its static formu-
lation otherwise could not.

(2) As a major contribution to vehicle routing
theory, we present new branch-and-bound algo-
rithms that solve for optimal routing. The

* routing problems cannot be solved directly by
integer linear programming (ILP) methods because
of tne limitations of available ILP methods.

1.3 Major Purpose of the Thesis. The major purpose of the

thesis, then, is to contribute to the understanding of

resource-allocation decision making by addressing two

aspects of the aeromedical transportation problem. how we

should devise an MIS that will provide information and even

suggested planning decisions to aeromedical transportation

managers, and how to construct its underlying analytical

model. Our major thesis is that the information flows and

decision making of the resource allocation process can be

modeled as a linear program, and solved by a resource-

directive coordination method derived from the theory of

decomposition in mathematical programminq. While an

extensive theoretical literature discusses models of this

kind, applications such as ours are rare.
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The aeromedical transportation organization possesses a

highly formalized resource allocation process, and a rela-

Iively easily quantified set of patient movement require-

ments, resources, constraints, and standard operating

procedures that are compatible with the severe assumptions

-f m3thomatlcal progamng . :mdels. And, thc resource-

directive decomposition method appears to be, among various

inds, most analogous to observed organizational behavior.

From an implementation standpoint, our choices reflect our

agreement with Atkins that

L. .. ]it is not our purpose to claim that one
'decomposition] method is better than others, but
rather that some are more suitable depending on the
circumstances. Our intention is that if we have any
particular organization in mind and if we can
..dentify key parameters that reflect the style of
management in that organization, and also if we
believe that we are unlikely to have success imple-
menting or getting new planning tools accepted that

cut across existing managerial styles and prero-
gatives, then we can sharply narrow down the choice
of decomposition procedures that we might be
tempted to use as analogies. [ATKI74]

i.4 Organization of the Thesis. Chapter II describes the

aeromedical transportation system and the planning problem

to be solved, based upon an examination of the organization

and actual system operation over a three-month period.

Chapter III addresses the design of rational models of

organizational resource allocation, presents the theoret-

icai concepts of resource-directive decomposition, reviews

the relevant literature, and presents a model. of the aero-

medica. planning problem. Chapters IV and V discuss air-
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craft routing problems and new solution algorithms. Chap-

N ter VI introduces the full allocation model. Chapter VII

summarizes our findings and suggests future research.

ENDNOTES

Economists ascribe the increase to changes in time util-

ity, how closely a commodity (or service) is made available

relative to its time of greatest usefulness, and place

utility, how closely a commodity is located relative to its

place of greatest usefulness. [LOWE75]

2. In planning to pick up, transport, and deliver patients,

S we must decide if we will provide complete, partial (to or

from an intermediate point), or no service. Criteria could

be geographical (serving only selected places), medical (by

diagnostic category or urgency), ethical (based upon

notions of equitable treatment), institutional (observing

policies and regulations), or facilitational (moving a

patient toward, not away from, his eventual destination).

3. These rules include stipulations such as which diag-

i- nostic categories and movement precedences permit or pro-

hibit overnight stops, and the maximum number of stops.

4. This anomaly occurs in civil defense and natural

disaster medical planning problems. Justifying a system

large enough to provide adequate ser,7ices under emergency

conditions is excremely difficult if the eccnoric costs to

create and sustain excess capacity gr:.atly exceed those

-incurred in normal circumstances.

0.
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"Patients cannot be subjected to the use of
vehicles for transportation that leave them
uncomfortable, apprehensive, or exhausted."
[MCFA53]

6) "Reaching patients who either could not be
reached at all by ground transportation or
would have to wait too long." [HELI83] "Almost
any patient who can be transported at all, can
be moved by an aircraft which is suitably
equipped and has medical personnel aboard know-
ledgeable about physiological changes patients
may experience in flight." [JOHN77,p.4521

7) Alternatively, when serious injury or illness
prevents movement, getting a higher level of
medical expertise direcly to the site. [HELI83]

8) With respect to routing and frequency of
operation, very flexibly adapting to the
requirements of the patients.

Aeromedical transportation systems differ widely in

purpose, in the types of services they provide, and in the

0 number of cases they handle. This study examines the US

Department of Defense (DOD) aeromedical transportation sys-

tem, the largest, most experienced, and least specialized,

in terms of the area it serves and the number and types of

cases it handles. Private and non-military public sector

systems are considerably smaller. Air-Evac International,

* for example, serves only the cities of San Diego and

Houston. Maryland Medivacs covers the state of Maryland.

Flight for Life, the emergency aeromedical transportaticn

* branch of St. Anthony's Hospital in Denver, specializes in

transporting critically injured and acutely ill to and

linking remote areas of Colorado, Wyoming, Montana, North

Sand South Dakota, and Nebraska with, large metropolitan

Denver hospitals. The DOD system moved an average of 5000
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patients per month in 1981 in the US alone [JONE82], while

Air-Evac handled an average of only 14 to 16 patients per

month in 1981. [SCHI81] Maryland Medivacs transported 2530,

primarily accident victims. (CBS 84] All 42 hospital-based

half the number moved by the DOD system. [REIC82,JONE82]

Besides providing both emergency and non-emergency

patient transportation, the DOD system is also interesting

from the standpoint that it is designed to accomplish two

very diferent missions, in peacetime and in time of war.

*O The peacetime system operates a worldwide network of air-

craft routes and patient handling facilities. The wartime

system will use the same resources and methods, but will be

expanded with wartime mobilization of reserve flight and

medical personnel. Current wartime planning calls for hel-

icopters and surface vehicles to move casualties from the

battlefield to aid stations and theater hospitals. For

more serious cases, C-141B transport planes 3 are to be used

to carry patients from a war theater to the US. C-9A's

• would then deliver patients to their destination hospitals

if arrival bases did not have adequate bed capacity or

medical service capability.

The DOD system posed some particularly difficult

challenges to our study. First, because it must satisfy

two interrelated objectives that both conflict with and

compliment each other, two decidedly different planning

IVU- 4o%
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Non-separability of the objectives arises in other

ways. First, the benefit objective tends to act as a

compensaticn device. That is, free or very low-cost

medical care can oe perceived by the soldier as form of in-

i nd compensation. This perception can be a significant

:actor _n the soldier's decision to continue his military

career, which contributes indirectly to the readiness

objective through the retention of a trained soldier.

The strong interrelationship between the two objectives

is also evident if one considers the most demanding health

care requirement, treating sick and wounded soldiers in

wartime. A principal function of the wartime system is to

transport those wounded soldiers whose expected treatment

[. and convalescence time would exceed a specified limit to US

nospitals. Daily peacetime operation of the aeromedicai

system contributes directly to the benefit objective by

transporting those eligible to receive care between treat-

ment facilities. At the same time, both the operators of

the aeromedical system and medical staff at the sending and

receiving hospitals rehearse their wartime patient movement

roles, test new equipment and procedures, and continually

exercise the command and control system.

Conflict between the objr-mives also exists, partic-

liarly in training military health care professionals, and

in organizing and positioning military medical services to

:;. .N. achieve both objectives simultaneously:

%4%
.4.O '
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Tailoring the ,Iealth care system for tio missions,
a peacetime one and a wartime one, poses difficult
problems. An ideal wartime system would consist of
a physician force heavy in surgical skills, well
prepared to deal with trauma, and a number of large
hospitals in the United States concentrated near
evacuation points.6 An ideal peacetime system would
consist of a physician force heavier in pediatri-
cians and other primary care physicians located in
smaller facilities at each military installation.
[DRMS79,p.80]

Indeed, the two objectives pose two fundamentally different

planning problems. The peacetime problem, given a rela-

tively (1) fixed health care delivery system in terms of

staffing and location of facilities, (2) stable demand for

medical services, (3) stable budget, and (4), perhaps most

importantly, considerable past experience, is to establish

a health services system that satisfies both objectives and

fulfills identified training needs. 7  Despite reported 0_

shortages of military physicians, there is no conclusive

evidence of either a positive or negative impact on health

care delivery. [DRMS79]

On the other hand, the problem of designing a wartime

system, without adequate estimates of (1) casualties; (2)

facilities and staff requirements; (3) transportation needs

both within the theater and to the United States; and (4),

CONUS hospital bed availability; 8 one that is, to some

extent, economically feasible in peacetime, and yet is able

to quickly adapt to dramatically increased requirements -At

ithe outset of a conflict, is considerably more complex.

The complexity of the design task is evident when we
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'" consider the various functions the system must perform to

achieve that goal.

The most important wartime role of the system is to

preserve the largest possible supply of manpower. There

-. are twc primary ways to accomplish this. When patients do

:, require extensive and complex procedures, long

conrvaiescences, or sophisticated equipment not found in

-art'efield aid stations and hospitals, treating them

Pw -,hin the theater returns them as quickly as possible to

d auty. The alternative is to defer treatment until patients

can be evacuated to the United States. (:n addition, the

wartime military health care system must continue to

provide health care to eligible non-combatants, e.g.,

family members of active duty soldiers, by shifting

responsibility to the civilian sector, a problem the DOD

nas only recently addressed. [DEPA81])

These two alternatives create what the Defense Resource

Ma:-agement Study called the evacuation planning problem:

0 -oe most important unknown is the number and type
of sick and wounded. Given patients, the next pro-
blem is to determine what kinds of medical
resources will be required to care for them in an
acceptable way. Given the kinds of resources
needed, the next question is where they should or

* can be obtained. Here evacuation policy is crucial,
V because it is the variable which determines what

facilities have to be located in the theater. This,
in turn, determines options for using CONUS mili-
tary, federal, arid civi.ian hospitals and
personnel ... Evacuation policy affects virtually

0 .every aspect of contingency pianning from airlift
to engineer construction requirements.[DRMS79,p.85]

4..
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An evacuation policy stipulates that, if a patient cannot

be treated and returned to duty within a certain number of

days, he will be evacuated. Establishing an evacuation

policy is very difficult. Independent variables such as

the type of warfare (static vs. fluid force movements,

weaponry used, terrain, etc.), availability of patient

transportation, and the quantity and distribution of medi-

cal resources constrain the set of feasible policies. An

evacuation policy is also an independent variable, since it

-: :n effect determines the relative amounts of treatment in

the theater, and evacuation for treatment in the U. S..

.J, Treatment in a theater will be difficult because of

severe shortages in physicians and fa-cilities that are

expected to exist at the outset of a conflict. [DRMS79]

Shortages are to be relieved by deploying medical staff and

N.' equipment from the US to reinforce existing medical units

and establish new units. But that solution requires esti-

mates of casualties that are very difficult to make, in

order to decide when, where, and to what extent additional

resources are needed. And, shifting resources from the US

requires facility administrators in the US to plan for

operation without staff and equipment lost to deployment.

0 The resulting loss of treatment capability may be so exten-

sive that non-active duty patients would have to be trans-

44 ferred to other facilities, and arrangements frr civilian

hospitals to admit new patients may be necessary. [DEPA81]

5N
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in World War 1, the evacuation policy was typically 150

;ays. By World War II, this tmne had decreased to 60 days,

and to 15 days during the Vietnam War. [DEPA78] The Defense

Resource Management Study points out that in

1374 .... the Secretary (of Defense] directed the
services and the JCS [Joint Chiefs of Staff] to
plan to evacuate a larger proportion of wartime
patients to CONUS then they had been planning to
evacuate. To do this they were to shorten the
evacuation policy, ... It was clear at that time,
and it remains true today, that the services had
programmed too little hospital capability overseas
to treat the number of casualties expected to need

0 in-theater treatment under the approved evacuation
policy. Shortening the evacuation policy and

* thereby returning a greater proportion of patients
to CONUS offered one solution. [DRMS79,pp.85-86]

Returning patients to the United States provides the

alternative means to offset in-theater treatment shortages,

but not without creating significant problems. Because the

TJS cannot maintain large military reserves of men and

equipment throughout the world for all possible contin-

gencies, current strategy calls for deploving of troops and

cargo from the US by air to a conflict. On their return

flights to the US, transport aircraft would be converted to

carry patients to US hospitals. (Currently, no other

means, 3uch as hospital ships, are available). But, using

trarsport aircraft for aeromedical transportation creates

*-. at least three major problems:

1) As the US increasingly employs weapons with
'black boxes' that mist be repaired in the US,
these high priority items compete with patients
for space on returning aircraft;

O%
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2) Cargo movements dictate aircraft routes and
schedules. As a result, patients may arrive at
US bases that have inadequate medical staff or
facilities, or the distribution of patient
arrivals and the availability of medical
resources may be poorly matched over time.

3) Aeromedical equipment for converting transports
to carry patients must be returned to the thea-
ter, competing -.ith critically needod war mate-
riel for space. (Of the 13 pallets of cargo a
C-141B can carry, two or three would be
required for aeromedical equipment). Using an
alternative aircraft configuration with very
little additional equipment alleviates the pro-
blem of recycling equipment, but substantially
reduces carrying capacity and patient comfort.

The second problem is particularly germane to our analysis.

A significant amount of patient redistribution within the

CONUS may be required. 9 This is a major justification for

peacetime operation of the CONUS aeromedical system, to

prepare for large-scale patient movements to resolve care

distribution and availability problems.

Ni Differences between peacetime and wartime operation are

clearly evident in individual patient care. In peacetime,

primary emphasis is placed on individual patient needs. If

a transfer is necessary, the basic policy is to send the

patient to the nearest facility with the required capa-

bility. [SIVE781 However, several exceptions are permitted,

including transfers to hospitals near patients' duty

stations, places of residence or to the same facility where

care had previously been given for follow-up examinations.

And, transfers may be made r-o insure sufficient caseloads

for training programs and for humanitarian reasons.
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During peacetime, aeromedical transportation planners

attempt to limit delays in initially picking up and in

delivering patients, total in-transit times, and the number

of overnight stops. Aircraft are dispatched to the air-

oorts nearest the patient's origin and destination; it is

not uncommon for a single patient to be enplaned or

deplaned at a given stop. Because of this, individual

flight segments and even entire missions1 0 may carry only

one or two patients. Maximum efficiency goals, such as

minimizing the total distance all patients travel, oper-

ating cost, or total aircraft flight time, conflict with

service oriented toward individual patients.

In wartime, emphasis will be placed upon moving full

patient loads as expeditiously as possible from evacuation

points to the nearest facility with enough capacity and

treatment capability. Patient volumes dictate this; in the

first 30 to 60 days of a major conflict, more patients than

the average peacetime annual total of 65000 [JONE82] may

require transportation. Each C-141B transport bringing

Patients to the CONUS has a patient capacity two and one-

half to four times that of the C-9A used for CONUS

redistribution from evacuation points to destination

hospitals." With only eleven C-9A's available,12 four

C-141B arrivals could conceivably require the entire C-9

fleet. Although each C-9 may be capable of making several

"-.-. redistribution sorties per day, an influx of several



26

thousand casualties per day could severely overtax the C-9

subsystem. Under these circumstances, maximum redistri-

bution flows would govern wartime movements.

In attempting to accomplish both its peacetime and war-

time missions, the health care system is not ideally suited

' for either. Maintaining large hospitals near evacuation

points implies allocating physicians away from primary care

facilities at each military installation. Training

programs at the large facilities require sufficient numbers

of cases to sustain them. Both of these circumstances

* create a medical transportation requirement. And, the

differences between peacetime and wartime patient movement,

. .primarily in the emphasis on individual versus mass trans-

fers, suggest that the aeromedical transportation planning

function should be capable of supporting both missions. In

the next section, we will discuss a number of additional

factors that increase the need for aeromedical trans-

portation, and complicate planning system design problems.

2.1.2 Military Health Services System. This section briefly

describes the organization and facilities of the DOD Mili-
tary Health Services System. We briefly discuss the nature

of the health service delivery problem and hypothesize

organizational institutional, geographical and economic

factors1 3  that create medical transportation needs.

Readers interested in more detailed descriptions of the DOD

5 health services system should see [DEPA83c] and [DEPA83d].

0"
TV
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2.1.2.1 Organization. The decentralized organization of

medical services in DOD mirrors the structure of DOD

itself. DOD and its major components, the three military

services (Army, Navy, and Air Force), utilize a line-and-

staff structure.14 Within each service, responsibility for

medical matters is vested at all levels of the organization

in medical officers who have de facto authority to admin-

-ster the medical health program. Each service's Surgeon

General manages the medical program of his service, to

include the administrative management of all medical

personnel, and the operation of facilities.

One apparent outgrowth of this structure is that Navy

c:inical staffs serve clients at Navy hospitals who are

predominantly Navy personnel. In calendar years 1981, 1982

and 1983, the highest level of interservice aeromedical

transfers was only 24.2 per cent. [HARR841 While no

restrictions prevent members of one service from obtaining

care at another service's facility, our patient movement

analysis in a later section reveals a bias toward moving

patients to facilities operated by the same service.

,n addition to their administrative assignments. mili--

tary health care facilities belong to geographical regions,

presumably among other things, to limit the distances

involved in patient transfers. However, no central author-

Lty exists within each region to coordinate planning and
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resource allocation, to include patient transportation.

The Armed Services Medical Regulating Office (ASMRO), which

centrally determines ("regulates") routine in-patient

Ntransfers between facilities, and validates requests for

higher than routine movement precedence, is not required to

observe regional boundaries. [SIVE78] Regardless, the

Government Accounting Office has frequently criticized DOD

for the number of interregional transfers ASMRO permits.

[DEPA78b] We will examine patient transfers in detail

later, and show that the structure of patient movements

definitely exhibits a regional bias, even in the absence of

official intraregional criteria.

- Patient transfers depend significantly upon another,

informal, organiz'tion among doctors. While ASMRO retains

approval authority over routine in-patient movement

- requests, attempting to match patient needs with the

closest available treatment, higher-than-routine precedence

and out-patient transfers are handled by the hospitals and

physicians concerned. That is, the administering physician

* who cannot provide needed treatment personally arranges

care with a colleague at another facility. Presumably, a

physician can veto arrangements he finds unsatisfactory, or

* suggest hospitals and physicians to ASMRO, which may

explain the same-service bias to some extent. Thus, Inter-

personal relationships among physicians seem to intervene

0 strongly in matching needed and available medical services.

.
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Institutional rules also contribute to the same-service

movement bias. Drug abusers and psychiatric patients must

be treated by their own medical corps. Regardless of the

nature of the care they require, patients who are also

prisoners must be treated at facilities operated by their

branch of service. [SIVE78]

Another important factor in military health services is

the relationship between health care objectives and organ-

izational structure. Responsibility for the readiness

objective is clearly assigned to each of the military

departments. DOD regulations stipulate that military mem-

oers must be treated at military medical facilities.15 On

the other hand, other eligibles receive health benefits

through a number of separately administered and uncoord-

inated programs. [DRMS79] Direct care delivery at a mili-

tary facility is administered by the medical corps of the

service managing the facility. Other medical treatments

may be provided at civilian hospitals under the Civilian

Health and Medical Program of the Uniformed Services

(CHAMPUS), particularly when patients do not reside in a

military hospital cachement area. CHAMPUS management

responsibility is assigned to the Assistant Secretary of

Defense for Health Affairs. In some circumstances, health

care may by provided by the Veterans Administration (VA) or

the US Public Health Service (USPHS), under negotiated

reimbursement agreements.

I
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Our patient movement analysis will show that these

various treatment programs create many cases where an

originating hospital transfers only one or two cases during

the three-month observation period. Such non-routine cases

complicate planning. Coordinating the patient transfer is

more involved if the medical staff attending the patient at

his origin is unfamiliar with aeromedical operating proce-

dures. And, aircraft operations at seldom-used airfields

involve a significant amount of preliminary coordination

with airfield management, comparison of aircraft capabil-

ities and limitations with airfield characteristics, and

non-routine flight planning.

• . There is some evidence16 to suggest that patient move-

ments reflect a kind of organizational learning and adap-

tation. Doctors apparently time movement requests to coin-

cide with aircraft movements, which do have a certain

regularity, at least at the regional level. By timing a

request, a doctor can increase the likelihood that his

patient is picked up and delivered with minimum delay.

This may be particularly significant in making scheduling

alterations that destroy perceived regularities. Also,

request timing closely mirrors the Monday-through-Friday

hospital work week.

*?

I,
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To this point, we have asserted that aeromedical trans-

ers are made in response to requirements that can be

influenced by:

I) Institutional arrangements that ensure patients
are moved to facilities belonging to the same
service;

2) Informal arrangements among doctors that
strongly influence the choice of a destination
facility;

3) Organizational learning that affects transfer
request timing and choice of a destination
facility;

4) Individual patient considerations, such as
transfers to locations near duty stations and
home towns;

5) Regional tendency toward nearby facilities or
major regional centers and away from obvious
flight scheduling difficulties;

6) Separate and uncoordinated care programs gener-
ating movement requirements from a large number
of military, civilian, VA, and USPHS hospitals.

7) Medical training program requirements.

7f valid, these factors suggest that predicting patient

movements using simple correlations among origins, desti-

nations, and diagnoses, and using them to predict patient

transfers would be very difficult (and misguided). The

next section will show that a number of other geographic

and economic factors further complicate the DOD aeromedical

transportation planning problem.

2.1.2.2 Facilities. The magnitude of the military health

services program is quite evident in the following:

I
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The DOD operates 170 hospitals, of which 129 are in
[the] CONUS and 41 are overseas. Tho Army operates

50, the Navy 37, and the Air Force 83. The normal 17

bed capacity worldwide is 37,069. Operating18 beds

total 20,650, of which 17,636 are in the United

States. In [the] CONUS, occupancy rates 19 range
from 49 per cent to 97 per cent; the DOD average is
73 per cent. Fifteen Army hospitals, 32 Air Force
hospitals, and one Navy hospital are Located in
remote or underserved geographic areas in [the]
CONUS. in addition, there are 302 free-standing
clinics and dispensaries and 19 drug and alcohol
rehabilitation centers." [DRMS79,p.81]

These facilities are located in all 50 states, and in more

than 35 countries. [DRMS79] Major problems in providing

health care do not stem from an overall lack of capacity;

rather, other factors contribute to supply and demand

imbalances and spatial dispersion in the DOD system:

1) Many military installations and their medical
facilities are geographically isolated within
the United States. Alternative sources of care
(e.g., civilian hospitals) may not be nearby.

.V2) The increased use of costly and complex new
equipment and procedures, coupled with a short-
age of specialists and a lack of patients who
require those services, make it infeasible to
provide a complete range of medical specialties
at every DOD medical facility. This has led to
hospital specialization.

* 3) Certain specialties, teaching and training
functions, and research activities have been
consolidated at a few very large installations.
(While the stated goal is economies of scale,
other explanations may be more accurate).

* 4) Overall manpower ceilings, specialty shortages,
and budget constraints necessitate tradeoffs to
meet both health care objectives. The need for
pediatricians, for example, has to be balanced
against the need for surgeons, with resulting
shortages in both specialties throughout the

* system.
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5) The locations and other cnaracteristics such as
the size of military installations and their
medical facilities are determined by national
c efense requirements and by other political,
legal and historical factors. The resulting
distribution of facilities creates situations
where large metropolitan areas, such as Los
Angeles, have few military hospitals with
limited capacity to serve a large number of
eligible patients.

The overall result of these problems of geographic

LSCdtion, distributed shortages, limited budgets, and

supply-demand imbalances is the need for an alternative to

direct care delivery in all specialties at every military

nosoital and clinic. The DOD medical transportation system

that botn permits and resolves the problems created by

4%

agglomeration, specialization, and spatial dispersion must

also be able to resolve the inherent differences between

its peacetime and wartime roles. And, it must be able to

QC so within the particular organizational and institu-

tional framework of the DOD that governs and affects

patient transfers. The following section will examine

aeromedical transportation from a systems perspective to

develop a conceptual model of the system and its responses

_o _ts dual roles and these institutional and organiza-

zional idiosyncracies, and outline a design for DOD aero-

medical transportation planning to improve those responses.

%S %%A
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2.2 A Systems Approach to DOD Aeromedical Transportation.

At the outset, we said that the principal focus of this

thesis is on DOD's domestic aeromedical transportation ser-
vice. We said in the first chapter that we were princi-

paily concerned with designing an aeromedical transpor-

tation management system, and that a maragement system is

primarily responsible for the generation of plans. Logic

would have it, then, that this thesis is about designing

(or redesigning) DOD's aeromedical transportation planning

system. It is.

Moreover, we said that we wanted to improve the system.

improvement implies a pragmatic concern with the future

- consequences of implementing the plans we generate, that

the condition of those served by the system is improved,

rather than worsened, as a direct result of the plans made

by the planning system we design. If we seek improvement

by means of scientific method, we will be using, to empioy

V , Churchman's label, a systems approach. (CHUR69]

" Then what, it is fair to ask, constitutes a systems

approach to the design of planning systems? Churchman

wrestled wich this question in perhaps the two most impor-

tant recent works on systems philosophy, The Design of

Inquiring Systems [CHUR71], and The Systems Approach and

its Enemies. [CHUR79] The orthodox management science or

operationq research approach would identify the planning

0

%'
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5.% oesign problem, gather data, formulate a model, solve it,

then recommend and implement actions based upon model

results, In tnat order. But why is the rate of failure so

nigh for this approach, which seems so seemingly straight-

:crwar Cnurchman contends that our first concern should

ce implemcntation, considering how and if we can achieve

imprDvement, what form any benefit will take, and how and

:o wnom it will be distributed. By first considering the

question of benefits, we should be able to determine the

-. eventual design goal and decide at the outset if and how we

* can attain it. And, we should not expect the steps in the

design effort, whatever their order, to occur once;

instead, we should expect as we proceed to learn more about

the system that will cause us to repeat previous steps.

To oegin to address the question of improvement in

nianning, we first need to examine the concept of planning

-:self. By first examining the nature of plans and plan-

ning activity, we assert that the essence of planning is
,%

inquiry, which we define as finding knowledge that provides

the ability to adjust -he behavior of the planning system

ro changing ci.rcumstances. Designing an planning system

i implies, in turn, two major design tasks, creating an

,nformat-on system responsible for gathering data, conver-

t~ng data into information, and communicating planning

information to a decision maker, and a decision making

system that uses information to make and revise planning

"p%
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cnoices. Churchman uses the term inquiring system to refer

to these combinations of information and decision systems

that give the decision maker the ability to adjust his

decisions to changing conditions, particularly in finding

ways to improve the contribution of the system's resources.

If inquiring systems require an information system, it

nas become abundantly clear in our attempts to build infor-

mation systems that they must be more than simple fact

collectors, processors, and distributors. The most impor-

tant characteristic of the information system element is

* that it must adequately incorporate linkages between system

components, in order to obtain data useful for planning.

But as we explore the question of how to design information

systems, we discover that very difficult design problemsJ,
must oe resolved.

Plans are not simply the fortuitous collection of just

the "right" data; the processing of data into information

and the conversion of information into decisions can

involve the solution of highly intractable problems.
Inquiring systems, then, require a decision making

component. Plans must not only be conceived Ln thought;

they must be communicated to decision makers and imple-

mented through action. And through a control process,

managers must adjust their plans in response to perceived

system performance. in other words, both the information

'S1and decision components are involved in much more than

V0



0O 37

simply specifying plans. If our eventual design goal is to

design the "optimal" planning system, it seems then that we

must specify (i) how to acquire knowledge (by designing the

most appropriate information system); and (2), how to

translate knowledge into action (by selecting the most

appropriate method of making and implementing planning

decisions), so that something or someone served by the sys-

tem (identified by some means as the most appropriate bene-

ficiaries of the service, of course) realizes an improve-

ment in that service (as determined by the most appropriate

* way to detect if and how service has improved).

Unfortunately, when we examine any potential candidate

planning system, even before we model a specific planning

problem, we discover that it is virtually impossible for

tne candidate system to satisfy this criteria for system

design optimality. We find ourselves doomed at the outset

:if our goal is to develop the 'ideal' planning model.

Alternatively, when we more closely examine the nature of

edesiqn, we find that by attempting to characterize a system

in terms of its basic components and their interrela-

tionships, and then redesigning one or more subsystems

toward the goal of whole system improvement, we learn some-

thing significant about the relationship between our design

and system performance. That learning is the principal

object of the systems approach, and of this investigation.
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For a starting point, we need a suitable definition for

the term plan. Webster's Dictionary suggests several:

plan: .. 3a: a method of achieving something: a
way of carrying out a design: DEVICE ... b: a
method of doing something: PROCEDURE, WAY ... c: a
detailed and systematic formulation of a large-
scale campaign or program of action ... d: a pro-
posed undertaking or goal: AIM, INTENTION ... syn
PLAN, DESIGN, PLOT SCHEME and PROJECT can mean, in
common, a proposed method of doing something or
achieving an end. PLAN implies mental formulation
of a method or form ... DESIGN adds to PLAN the
idea of intention in the disposition of individual
parts, often suggesting definiteness of pattern, or
a degree of harmony or order achieved. [1729-17303

The synonymous relationship of design and plan, in which

*O intention, action and achievement of ends are implied, is

important to our concept of designing a planning system.

Let us say, for a first approximation, that plans are:

a) counterfactuals, historically-derived theories

about the future: "If we take actions x,, x2 ,
S..., xn, then Z will result." Counterfactuals

cannot be scientifically tested, because we
cannot observe or test for the occurrence of
the result before the plans are carried out,
particularly when we are not allowed to exper-

A. iment with the system. Rather, any faith we
have that these conjectures will work must be

A' based on past experience. [CHUR77]

6 b) decisions, of which activities we will
implement, (and which ones we will not, for
which there may be some lost opportunity, and
possibly an associated opportunity cost);

• c) co- roducers of future states, in the sense

6 % that, in concert with the uncontrollable ele-
ments uf the system's environment, they parti-

-. ally determine what will occur.

d) purposeful and implementable intentions.
Because planning addresses the consequences of
future states, plans are deliberate attempts
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to achieve a particular state. If we only
deliberately attempt what we think we can
feasioly do, then our plans are tnat wnich we
feel we can transform from intellectual
conception into action;

e) episodic and incremental. Changes in system
U eand, resource availability, and costs may
require reformulation of plans. When aero-
medical transportation plans are converted
into actions, they co-produce results that
directly influence future planning. Planning
may have to correct past planning mistakes,
and should anticipate the possibility of
errors by specifying contingent alternatives.

5) products, of knowledge-based information sys-
tems. if data is any bit that describes some-
thing in the manifold of universal phenomena,

and information is data used to construct and
evaluate alternative future courses of action,

* then knowledge is information that allows the
. planner to distinguish between better and

worse actions, in terms of changing system
performance. In this sense, knowledge is used
to produce planning choices.

To be able to generate plans, which must specify where

every important entity in the system should be and when it

should be there, every inquiring system requires a geometry

(theory of space) and a kinematics (theory of time). The

principal role of an inquirer's information system is to

monitor the current system state, defined in terms of ent-

ity attributes, including location, at discrete instants in

time. State data must be collected, filtered, stored,

,rocessed, transmitted, and ultimately, used to estimate or

forecast future states via equations of system motion or

.transformation in time and space derived from the geometry

and kinematics of the inquiring system. Its decision sys-

tnem, in turn, must decide on levels of controllable varia-

x. :lz1*,Z
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bles in the equations, carry out the resulting plans that

are calculated, monitor and compare actual with planned

outcomes, and generate any corrective actions necessary.

Mason's article, "Basic Concepts for Designing Manage-

ment Information Systems" [MAS075], provides a particularly

useful classification scheme (Figure 2.1) for planning sys-

tzems, in which the classes depend upon the set of assump-

tions used to construct its information and decision making

components. These assumptions range from those that pre-

scribe what to observe, to those that characterize the

* motives and feelings of the decision maker, and they are

the products of judgement's made by a system's management.

Assumptions present the first of many difficulties we

will have in designing an optimal information system.

Figure 2.1 suggests that the number of assumptions possible

in an organizational setting is literally infinite. Church-

man, Auerbach and Sadan, who identify four basic types of

assumptions, descriptive, prescriptive, hypothetical, and

categorical, show that even the number of all possible

- types is large, because these types are not exclusive.

.CHUR75] Assumptions are not analytical, and they cannot be

proven, because by their very nature, they are taken to beS
true. But, most significantly, they can be wrong. As

Mason's scheme suggests, the outputs of one process stage

are the inputs to the next. Therefore, since assumptions

directly influence each stage, tney ultimately influence

-.
0'
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0 cause and effect relationships amiong data items arnd

between present and future states of the system.
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WI which categories), measured (on which scales) and recordifed as data
i .tems and about which items are relevant to subsequent decisions-

Figure 2.1. Mason's Taxonomy of Planning Systems.

Source: [MASO75,p.13]

action. By deduction, erroneous assumptions can cause the

wrong actions to be taken.

Mason's taxonomy implies that a wide variety of very

different systems can be constructed, each one reflecting a

particular world view, depending on the assumptions it

* embodies and the arrangement of its components:

Type of Information System Decision System
Planning System Components Components

41Databank 141I III,IV,V
%4Predictive 1,11,111 TV,V

Decision-Making I,II,III,IV V
*Decision-Taking L,II,III,IV,V

011
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Databank systems, such as accounting systems and infor-

mation utilities, are the simplest, most common, and pro-

vide the lowest level of decision making support. Predic-

tive (e.g., econometric models) and decision making systems

(e.g., optimization models) are relatively more complex,

less common, and provide more sophisticated decision

support. [MASO75] In a systems approach, an extremely

important task is to determine which particular configu-

ration constitutes the most appropriate inquiring system.

Linear programming (LP), a method we use in the thesis,

S provides an interesting example of a widely used, rational

approach to planning. It provides us with a specific means

by which to examine the question of appropriateness and

some reflections on the phenomenological nature of plan-

ning. In Turban's survey [TURB72] of the corporate use of

* -operations research models, LP ranked third after statis-

tical analysis and simulation in frequency of use.

Ledbetter and Cox [LEDB77] found in their study of the use

of analytical models by 176 of Fortune's 500 largest corpo-

rations that LP ranked second after regression analysis.

LP applications range from the simplest textbook problems

to the central management of entire economies. [KORN67]

In the instruction of students of operations research,

LP plays a central role, if the amount of text devoted to

the subject is a good indicator. In one of the most widely
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used texts, introduction to Operations Research, 3rd. Ed.,

SHILL80] Hillier and Lieberman devote six of eighteen chap-

ters to LP, and make occasional references to it in sev-

eral others. if LP is so pervasive in the application and

teaching of operations research, what is its particular

appeal? More importantly, what is its epistemology? And,

*as a planning system, what precisely does it do?

Linear programming (LP) is not programming in the sense

tnat we program computers; rather, LP selects which activ-

.ties to carry out among a number of candidates, and the
6

:evel of each activity. In a linear program we want to

find a program (or plan) that will

Maximize Z cix i + c2x 2 + + Cnx n  (2.1)

Subject to: a1 1 x1 + a1 2 x 2 + ... + alnx n  b

a 21 x 1 + a 2 2x 2 + ... + a2nxn : b 2

(2.2)

amixI + am2 x 2 + ... + an b

all xj 0. (2.3)

*" where

X x = the amount or level of activity j;
_J

C c = the cost or contribution of xi of one unit
of activity j;6

aiJ = the amount of resource i used by one unit of
activity j;

b. = the amount of resource i available;

* Z = the total contribution or cost of the
program of activities we select.
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in the vernacular of LP, equation 2.1 is the objective, and

the linear inequalities 2.2 and 2.3 are called constraints.

As with all rational models, the assertions or conse-

quences of LP follow directly, by orderly rules of deduc-

-, on, from its assumptions. in this formulation are these

. four, according to Hillier and Lieberman [HILL801:

1) Proportionality: (1) the contribution to Z of

Xk is ckxk, where c. is con-

stant, regardless or the mag-

nitude of Xk;

(2) resource usage is aikxk,

where the m resource usage

coefficients aik do not vary

with the magnitude of Xk;
V.

2) Addi.tivity: activities do not interact.

Terms with products of

variables, e.g., 3x 2x 3 , do not

appear in the objectives or in
the constraints;

3) Divisibility: activities can be conducted at

non-integer levels;

4) Determinism: every contribution, resource
* level and technological coef-

ficient is known and constant.

Based upon these postulates, widely known theorems state

-nat optimal solutions (if any exist) occur at the convex

extreme points of the solution space, that those extreme

pcintS are finite in number, and therefore, that only a

finite number of steps are necessary to find an optimum.

The simplex algorithm, with three decades of sophisticated

Z;, refinements, is now capable of solving extremely large
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problems, with surprising but not clearly understood effi-

ciency. Significant advances have also been made in the

development of methods to solve planning problems when one

or more of these assumptions does not hold.

To this point, we have given a very typical and very

grossly understated description of the properties of linear

programming. When we more closely examine the seemingly

simple system defined in (2.1)-(2.3), we find that it

mplies another very sweeping set of assumptions:

5) Range: despite the fact chat coef-
ficients are derived from limited
historical experience over the
possible range of xk, any solu-
tion is presumed to be imple-
mentable, even when one has no
actual experience in that range.

6) Holism: nothing irrelevant or erroneous
is included in the model, and
nothing relevant is excluded.

7) Monotheism: a single objective integrates all
activities into a single measure,
by correctly incorporating the
values of those served by the LP.

8 Causality: actions in the optimal plan cause
the optimal objective value to be
exactly achieved. In effect, an
LP guarantees its own optimality.

We will find these assumptions far more difficult to defend

when we subject LP to the criteria we gave earlier for an

optimal system design.

Deciding if LP is an appropriate inquiring system for

the DOD aeromedical system requires the strong systemic

IN 'NU
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judgement that it is best among all alternatives. Scien-

tific disciplines whose research create methods such "_ LP

are silent on this issue; they disclaim that inappropriate

use cf a model is the fault of its developer, and not of

the model itself. After all, deductive models such as LP

produce knowledge rationally, through orderly rules of

deduction, without any blatant contradictions, from plaus-

ible, and to be accepted, highly defensible assumptions,

-which are the responsibility of the model developer to

select and defend. The fundamental flaw in this argument,

ironically, is that there is no scientific method for

selecting and defending those assumptions and hence no

scientific way to prove that LP is appropriate for a given

application. For that matter, since we cannot establish

the appropriateness of any one scientific method, we can

never settle the issue of which one is 'most appropriate'

Correctness and comprehensiveness are two other major

issues in establishing appropriateness. The sixth LP

assumption above presumes that nothing irrelevant or erro-

0 neous is included, and that nothing relevant is excluded.

We could add the presumption that, in addition to theory,

LP computer codes operate correctly. No proof of correct-

0 ness or comprehensiveness exists to assure this, although

we cannot argue that they necessarily are wrong either.

That leaves the burden of proof to empirical obser-

vation. Suppose we constructed and ran an LP (and our com-

0

%..
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puter software correctly solved the model), and informed

one particular hospital administrator that, in the interest

of the whole system, we were eliminating two stops per week

at zns facility that we have made for the past ten years.

Verifiying the model would probably be difficult, even it

it was correct, since he might feel that something is

I'oviously' missing. That there may a 'perfectly rational'

exolanation tnat an LP has the peculiar property of

'eiecting exactly as many activities as it has constraints

:ndy not convince system managers, and we would not achieve

-ne .o-nsensus needed to verify our model. The presence of

several thousand constraints and variables makes empirical

verilicat~on of comprehensiveness and correctness virtually

impossible, yet models of that size are routinely used in

airline planning and oil refinery production applications.

There is a third issue involved irn judging the appro-

priateness of a particular scientific method. Models mUst

oe tractable; unsolved formulations, no matter how elegant,

are nothing more than restatements of the problem. LP, for

example, currently does not have an adequate capability to

solve large models with integer variables, yet the aero-

medical system cannot move fractions of patients. The

routing problems we encounter in aeromedical aircraft

5%/L s cneduiing are said to be NP-complete, which means that

beyond a certain problem size (in terms, say, of numbers of

oatients to be moved) we may not be able to find a
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computer with enough memory to solve our model, or we may

not be able to wait long enough for solutions to be found.

In short, there is no theoretically defensible way to

select an appropriate, or the most appropriate, inquiring

system for aeromedical transportation planning. There is

another problem that is at least as troublesome. No matter

how appropriate (correct, comprehensive, or tractable) an

.nquiring system we choose, its ultimate value lies in

producing Knowledge that can be translated into action. In

planning, we must ensure that whatever actions are planned

• are carried out (implemented), as planned. There are a

number of dangers that this will not happen.

' For the outcome planned by an LP to be realized, all

system entities must behave as predicted. The planner's

inability to correctly predict the behavior of system

components is often attributed to faulty forecasting. What

*i such an assessment overlooks is the failure of the LP to

V- create the incentives for the various components to adhere

to the plan. When we examine the particular kind of LP

formulation that we use to model the aeromedical problem,

4n which cojective attainment is allocated to a number of

organizational subunits, we implicitly assume that the

units are cooperative, or at east compelled by something

not represented in tne model to make contributions to the

S..-whole organization, even Against their own self-interests.

V
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We are not suggesting that we must naturally mistrust

everyone, but that incentives are not easily repres,:nted.

A second implementation danger is the failure to spec-

i:v in the LP the actions that should be taken in the event

- -hat changes occur that make plans infeasible. In other

words, a very important part of the implementation process,

is to plan for a change of plans. Through sensitivity

,analysis, LP models can be made adaptive, to a certain

extent, zo changes in problem data, but not, of course, to

problems of model misspecification, at least not without

L-he aid of something outside the model.

The rnird implementation danger, which stems from the

V wnole system specification problem, is that we may be mis-

'V led by LP to do, albeit very precisely, the wrong thing.

Failure to specify a relevant constraint may have little or

-n effect on simplex calculations, but could oroduce

comoletely erroneous solutions. We can also find signif-

.cant ethical difficulties in implementation. As we will

0 see, there are significant questions of tradeoffs between

erving individual patients and efficient resource utili-p

zation, and of treating patients as both means and ends.

Or list of implementation dangers could go on, but one

more should be mentioned. Even if someone knows an optimal

so~ution, somehow system managers mist be induced to carry

ut the plan. Earlier, 4e mentioned the incentive problem.

. . .. . .
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Another potential provblem s that managers may not have

She capability to compute or recognize optimality. In the

The Behavioral Theory of the Firm, Cyert and Marcn [CYER63]

argue that analytical systems such as LP miss the mark on

two counts: managers do not optimize, they 'satisfice'

(work toward acceptable levels of achievement), and they do

so because their computational capability (their ration-

ality) is bounded. And, Woolsey says, "Managers would

rather live with a problem they cannot solve than a

soLution they io not understand". [WOOL80,p.51 As a result

N of their 'bounded rationality', managers are not neces-

sarily motivated to find solutions unless and until they

perceive that a problem exists. And, their search for

solutions they can accept is often restricted to the use of

relatively simple methods that consider solutions closely

related to those that have worked in the past. [CYER631 in

contrast to rational inquiry, the process of planninq and

implementation described by Cyert and March is one of small

mhanges, which Lindbloom calls incrementalism. LrIND59]

* The relationship between planning system and decision

makers also portends implementation difficulties. Mason A

considers LP a decision-taking system. Since an LP

* presumes that an accounting information systems exists to

-specify all coefficients, that all (linear) relationships

among activities are correctly specified, and that organ-

• izational values and its choice mechanism are incorporated

j",P .O.- .. -~
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ln the objective (and Implemented through the mathematical

oroperties or constrained linear optimization models), the

optimal decision an LP finds leaves the decision arL with,

.4. the options of either ("rationally") taking the actions it

specifies, or ("irrationally") vetoing it. With the

.:exception of oil refinery applications, Mascn could not

-:nd other examples of LP-based, broad-scale organizational

u anning in which normatively prescribed decisions are

a'ways followed. [MASO75] Simon [SIM077] makes essentially

-e same conclusion, that normative models do not consti-

* tute a positive theory of managerial decision making. This

seems to contradict the evidence that LP is widely used.

Can we conclude either that organizations plan, but do not

act, "rationally", since they apparently use models such as

LP quite extensively, or that it is LP planning itself,

epistemologicalIvy speaking, that is not rational? We will

attempt to answer this important question, but only aflter

we discuss the issue of improvement.

-f selecting an appropriate inquiring system and imple-
S

menting its plans are troublesome, determining the amount

or degree of system improvement can be even more difficult.

The essential problem is to judge if the actions taken by

implementing its plans have improved the condition of those

served by the system. This again is largely an ethical

question, the answers to which depend upon strong systemic

SV

".,
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judgements. For example, in aeromedical transportation, we

need answers to such questions as

1) Who should be served by the system?

2) What system goals are appropriate? What if the
current system goals seem inappropriate?

3) To whom and to what extent should solutions be
revealed? (At high wartime operating levels,
the aeromedical system might be unable to move
all patients, with that result that some may
die. As clients, do they have the right to
know this? Who decides?)

There are two paradoxes involved in the determination

Sof improvement. The first has to do with the way we

measure the amount of improvement, which in LP is through

the objective function or functions. Suppose the objective

of an LP must be expressed in terms of service to system

clients. We can say, first of all, that there is no scien-

tific way to establish the scope of an LP objective! mathe-

matically, there is no way to choose between an objective

that, say, minimizes the lengths of routes traveled by

-eromedical aircraft, versus another that calls for maxi-

mizing the achievement of good health by the entire DOD

health care system. And secondly, objectives are expressed

A in terms of cumulative benefit, and not in the distribution

of it among clients. For the same level of objective

* achievement, we can provide patients widely varied quality

of service, as we demonstrate in the next section.

A paradox of system objectives arises in the following

way. If we can resolve tbe questions of the scope and
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distribution of achievement, then in principle we should be

eabe to stpecify system objectives that express the system's

intents and purposes. But precisely who should "we" be?

:n other words, to establish objectives (which all purpose-

fi systems have), someone's objective must be to set

objectives. How do we select such second-level objectives

-nat resolve tne first-level objective-setting problems of

_,cope and distribution? Who, among goal-seekers, has the

ga I if seeking the system's goals? For the moment, let's

ca1 'them' the decision makers. How do we measure their

*arcnlevement in choosing measures of system achievement?

Any answer seems to point to a third group, whose goal

i.3 to choose the gcal-setters, which requires a third set

- of objectives. Let us call 'them' system designers.

-" Logically, of course, while we are at it, nothing prevents

'3 Lrom suggesting a fourth level, at which the principal

Sconcern is assessing the performance of those who choose

t e goal-setters to select the system goaLs. We have no

-" convenient label for the fourth group, although we have

some specific examples in mind, such as licensing bodies.

We can see, then, that the specification of objectives

* involves a number of complex and interrelated decisions by

More tnan one set of decision makers. The effect of the

caradox is to obscure the distinction between system roles.

;LFor example, the system: resigners who choose the decision

maKers become dec s3>n makes themselves, and may even

I
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become beneficiaries of system performance, through the

fees and salaries they receive for their performance.

The second improvement paradox also has to do with

measuring system performance. Essentially, measuring

performance means determining all relevant costs and

benefits, which requires data to carry cut a cost-benefit

analysis. Typically, we use historical data on past system

performance, but to what purpose? We use the data to gene-

rate the optimal plan for system activities. If the system
.4

were operating optimally, we would have one set of data

* reflecting this. If it were not, we would have a second

set. To seek improvement implies non-optimal operation,

and the existence of the second set, but not the first.

Data and plans, then, are interdependent, and hence the

paradox. In the aeromedical problem, for example, we have

-' observations of patient movement. If our assertion is cor-

rect that doctors adjust demand to system schedules, which

produces non-optimal system behavior, then our demand data

reflects or is biased by that behavior. That demand might

differ significantly from what we would observe if the sys-

tem operates according to the plans generated by our LP.

* The data we utilize also depends critically on what we

.*e. consider to be the 'system'. We could, for example, define

it to consist of all DOD medical facilities in the US and

* the transportation sjscem connecting them, and measure

0 '.
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k-:h patient movement through the network, resource utilization,

bottlenecks, etc., the stuff of typical operations research

analyses. But, the movement of patients is also linked to

other subsystems. More than just patient origins and dest-

inations, hospitals are complex systems with different

I treatment capabilities, patient handling capacities, and

saff training programs. These training programs within

-he hospitals affect patient movements into and out of the

-os ital depending upon training case load requirements,

patient treatment needs, and other factors. Patients are

* not nomogeneous, and each entitlement program that gene-

rates patients is a candidate subsytem to be included in

the system. The extent to which we include these various

subsystems and the linkages between them strongly influ-

ences our choice of data to measure system performance.

So, besides the problem of utilizing data from an

imperfectly functioning system to develop plans to improve

- that system, we have the additional problem of deciding-r

what data is relevant, which depends upon our view of what

- constitutes the system. Our data collection necessarily

changes as we incorporate more and more system components

and linkages. And, of course, nothing systematically tells

.Is how to do this, and we again fall back upon making

strong systemic judgements to overcome these paradoxes.

0 Table 2.1 summarizes our discussion of LP as a suitable

design methodology "or the DOD domestic aeromedical trans-
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TABLE 2.1

COMPARING LINEAR PROGRAMMING WITH OPTIMAL PLANNING SYSTEM
DESIGN CRITERIA

Major Design Task Critical Issues Related Design Problems

Choice of Method Appropriateness Making defensible
choices

Correctness Model verification

Comprehensiveness No adequate tests

Tractibility Modeling limitations

(e.g., integrality and
NP-completeness)

Implementation Incentives Cheating, inaction, or
wtong actions

Prediction No satisfactory theory

Anticipating Forecasting
needed changes Static formulation of

dynamic problems

Precision Solving the correct

problem

Ethics Goal appropriateness

Choice of beneficiaries

Decision support Usurping management

prerogatives

improvement Objectives Scope
Distribution of benefit

Measurement Comprehensiveness
Reliability

A-. _Representativeness

0

portation planning system. The problems associated with

using LP seem to strongly argue against its use, since it

0 seems to fail against every criterion. For that matter, it

would seem that any method would likewise fail.

-. What we failed t! io before we began to examine a
s

€"specific approach was tc. specif', what any design

S%

,. - - - CC'
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N methodology should do. Churchman suggests that any system

(design should:

-) Attempt to distinguish in thought between dif-
ferent sets of system behavior patterns.

2) Try to estimate in thought how well each
alternative set of behavior patterns will
serve the system's specified goal(s).

3) Seek to communicate its thoughts to the sys-
tem's decision makers in such a manner that
they can convert the thoughts into corres-
ponding actions which in fact serve the goals
in the same way the design said they would.

4) Strive to avoid the necessity of repeating the
thought process when faced with a similar

. ~goal-attainment problem by delineating the
* steps in the process of producing a design.

') Attempt to identify the whole relevant system
and its components, so that design alter-
natives can be defined in terms of the design
of the components and their interrelation-

0 ships. [CHUR71]

The last characteristic is perhaps the most important, and

in terms of designing a planning system, the first order of

ousiness. It establishes two essential tasks: identifying

'V the system and defining design alternatives in terms of

system components. The balance of this chapter will

* address the first, leaving the second to the next chapter.

In system identification, one of the major philo-

s ophical difficulties in describing complex phenomena,

including systems, is to establish a method by which to

convey tne form of the phenomenon as comprehensively and as

i;nderstandably as possible. In the following sections we

- a ve used Churchman's mrnthod. As Kant did in Critique of

0!
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Pure Reason [KANT88], Churchman sought to devise a set, or

system if you will, of (non-exclusive) categories that

comprehensively and collectively exhaustively convey the

form of a planning system. Because the ultimate value of a

social system is measured through the human needs it

serves, Churchman constructed three major categories around

the people who are at the center of the planner's reality:

rhe system's clients, decision makers, and planners. The

decision maker can realize changes in the system; planners

conceptualize and evaluate change in terms of service to

the clients, and then attempt to influence the decision

4makers to realize those changes which benefit the client.

The categories serve at least four purposes. First,

they are intended to operate universally and a priori, and

not to apply only to a specific system. Secondly, they are

intended to provide the means, through a set of labels, of

understanding the process of comprehending purposeful

reality, of making reality intelligible. They are designed

to make explicit the realistic and ethical components of

design, through which a design transforms what is into what

should be. And finally, they afford us the capability to

communicate our description, design goals and plans in

terms of the definitive categories.

From the categories, which are further subdivided into

three subcategories, h devised a set of axioms on the

suitable design of a planrn.o system:

I
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1) Everv deliberately pianned numan action should
serve a specific class of individuals called
clients (and should not serve some other
classes).

2) Clients are served by attempting to achieve
- ethically defensible goals, objectives, and

ideals.

3) There should be an integrating theme (measure
of performance) for client service.

4) For every deliberate action, there are decision
makers who should (and others who should not)
co-produce the action

5) Decision makers co-produce actions by using
appropriately resources and sets of resources
called components that they can and should be
allowed to use.

- 6) For every deliberate action, there is a co-
producer of goals, objectives and ideals, which
cannot and should not, be changed by decision
makers, called the environment.

7) There exists a class of actions which should be
planned by an appropriate group or individual.

8) Such appropriate plans ought to be implemented.

) here exists (or ought to exist) a guarantor to
prevent the disaster of erroneous plans and
guarantee progress through correct plans.
[CHUR79]

,A With this framework, we will attempt to characterize the

aeromedical system through the categories, and describe how

the system functions. We will conclude with our view of a

rna-or aeromedical planning problem that can be addressed

w' *n methrods defined in the next chapter, and designed and

:ested in the remainder of the thesis

2.2.1 Clients. The tak f Ldentifying the aeromedical

System's clients, thc. wno . -cridition is improved through

%0kM
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the performance of the DOD aeromedical transportation sys-

tem, is more complex than than it might seem. For the sys-

tems approach, it as least as important to ask who ought to

be served by the system as it is to ask who is served.

Determining who ought to be served involves choice, which

implies criteria for client selection. Furthermore, client

choice is inseparably tied to the system's purposes, whichS..

-, should be functions of the clients' interests.

AWe first attempted to construct a list of clients, the

benefits they receive, and the basis for those benefits.

Because the question, "Who is served?", led to the exclu-

sion of no one, we then asked, "Who should be served?".

The list remains the same, but the reasons for including

each beneficiary class are more interesting.

Client Benefit Obligation
'.-

Patients Treatment and the DOD employment

possibility of cure benefit

Patients' Protection of family DOD employment
Families financial resources benefit

System Salary, intangibles Laws governing
Employees such as marketable salaries and

job skills entitlements

System Employment benefits US Public Law
Managers (salary, advancement)

Vendors 7ndividual (salaries, Contracts obli-
advancement) and gating the US
corporate rewards Treasury

* (profits, dividends)

Places where Ecottomic benefits of Contracts, local
the system expenditures and and state tax
operates tax revenues laws

Nation Incra , ; protection US Constitution
0 thro ,, -e d. .ness

5q..,
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For active duty patients, medical care, including

ancillarv services such as transportation, is; a benefit of

employment provided by the Defense Department by law. DOD

explicitly tells its employees that, since their major med-

ca' needs are provided for, there is no need for them to

ScrrV medical insurance. [DEPA82] Military employment can

-..volve isolated or hazardous duty assignments where pri-

..ate care is not available, or for which the service person

.would nave to pay inordinately high costs and insurance

):ei.ums (which usually exclude war and aviation hazards).

..?he health benefit is not negotiable; the US soldier's
r =gh -o engage in collective bargaining, job actions, and

,~~~~o actions, andrdgdude h

rrkes iS abridged under the Hatch Act. Furthermore,

emplcvee care is compulsory; e.g., certain employment stan-

dards are enforced through mandatory physical examinations.

t would seem, then, that through the conditions

Lmposed on the employee by DOD, and its acknowledgement of

..s obligation to provide care, the organization legally

and morally commits itself to provide medical service to

-hose on active duty. And because free treatment after

retirement is offered as a means to induce active duty mem-

rners 7? commit themselves to military careers, retirees

seem :o oe ethically right, as well as legally entitled,

..1lents. Earlier we mentioned thac service family members

arP a.so entitled to r- :ai care under public Law. They,

too, can be sub-ecte- ., _:me -)f the same circumstances in



which private care is not available, which suggests that

the entitlement is justified. By expanding the patient

base with eligible family members, larger training programs

can be supported, and since training programs achieve

medical readiness, a case can be made tnat family members

are contributors as well as beneficiaries.

Whether the system's employees, managers, and vendors

should be clients is a difficult question. As long as the

sysem requires resources, some will benefit from the eco-

nomic transactions involved in obtaining and using them. It

~ seems that an ends-means test is applicable here: economic

benefits should accrue to those whose contributions (labor,

goods, management) are made to achieve the system's ends,

and not to exploit the system as means to their own ends.

-We have an example of the latter case in mind, but it first

requires us to introduce another potential client group

The people of the United States constitute a very

.nteresting set of clients. As taxpayers, they provide the

resources for defense; as citizen , they are served to the

extent that military readiness achieves the goal of

defending them. We are not arguing that taxpayers should

necessarily oe clients simply because they pay for the

system. Rather, because tney pay -axes tc achieve a common

-. ood, they seem tc be entitled to te benefits of defense,

Lf national defense is a goal that ought to be pursued.
So, tne question ct wnether is cit-zens should be cl;ents

s'. -
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."folds Cnt te most criticai and d fficuit systems

e s io n hto ., need to answer: Is defending its citizens

. n ca national pursuit?

Economists respond by saying that, to individual

citizens as consumers, defense creates a "public good",

:'rov'ing each citizen the same benefit, regardless of how

7.ucn -e contributes t t although their_ microeconom ic

Mneuels are unable to measure the costs and values. They

so argue convincingly thar the macroeconomic effects of

iief nse spending are particularly significant to all

cL:izens, because of the mani tude of defense spending and

..s impacz on the national economy, and because resources

uunircto oefenise cannot be used 'or other societal

c irposes. Thucydides raised this issue 2400 years ago:

,at good is building a magnificent machine of
ies.rucion to protect one's valued way of life if
,:-,e prucess is so costly that it wastes that way of

a :e surelv as if one's enemy had triumphed on
-e battlefield?

ut, oeycnd establishing now tneir economic interests are

errecleo, economic theory does not address tlie ethical

-suesricn or whether all US citizens should be clients.

.mm a systems standpoint we would argue that we cannot

* answer -n& quest ion of whether any individiaL :)r group

*-i . bo, ciients without coPsuering the interests or all

e -r o enmiaI c ien s. As we will demonstrate in ou.ir

i ist -s:; ron of measures performance, service to each

:- -

A & 6
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individual patient is inextricably tied to serving all

oatients. In turn, because patient service uses public

resources, the interests of the public are also involved,

which suggests that they must be considered as clients.

S. 2ut the unfolding of th client list does not stop with the

oeoole of the US, since US defense pursuits have sicnif-

icant effects on other nations. Out list should also have

included other nations who benefit througn mutual defense

- treaties, and perhaps even all nations, to the extent that

-ajor conflicts are deterred. (The negative effects of
_. system fa'lure could also be used to argue the same point).

T he client question, then, continues to unfold until

utimately we must consider whether the interests of all

human beings are effected by a US defense subsystem,

t1hereby making them clients. in reality, we would argue

that the planner's main client is always humanity, because

linkages between all client groups always exist ana cannot

-.. ne ignored. These linkages are particularly important to

our system description, because they characterize the

* inhet.ently conflicting interests of the various client

groups. And, as we will show in tne next section on system

purposes, some conflicts among clients are unreqolvable.

Ethically, -whether humanity should be the main client

Is not as apparent, because t nvolves the question of the

system's purpose, on,.cr. wP have not yet discussed. But

-his is ultimately pract:.cai issue: How large i client

V

t'S

0
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group can we adeua tely represent 4n our moael? In our

:.cdement, we can to some extent represent patients, system

Memoers, and US citizens, but we have to exclude all

' ners, :ed.zing fully the sacr.fice in comprehensiveness.

With this in mind, we can return to a group we deferred

Sudgement on earlier, the system's employees, managers, and

3 suOpIlers. It we must have an aeromedical system, we

3nsould compensate those who provide its resources and

canagement. The system should not serve those who perpet-

,. .a:e the system for their own advantage. if this and other

.i eense system components were perfectly designed, they

not exist at all, which would constitute the optimum

-Peve- of client service. This argues strongly against such

:-actices as maintaining constant budget levels, which seem

oirected more toward making the management task easier than

3crieving an end that ought to be pursued.

3.ore we begin our discussion of purposes, we snould

m E, t e L a recurring problem ;n relating client benefit to

system performance. We have identified and chosen clients

as members of large classes, and it is easiest to rate

aggregate service to all class members. Even : the aggre-

gate nenefits are large, the distribution otf them to each

I .nsi'Lda' client ,s also important. ThLs seems partic-

-, siar y true Ln the case of' medical care, wrere attention to

. dividual needs is extremeiy important. We will illus-

! rate this in our disc..;..son of measures of performance.
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2.2.2 Purposes. In our discussion of the clients of the

aeromedical transportation system, client choice was based

on obligations to serving them, a narrow and more passive

view of why they ought to be served. As planners and

decision makers, we actively intend for future states of

the world to occur that will benefit clients (just as we do

not want other non-beneficial or harmful states to occur).

Pragmatically, these intentions must be achievable, through

appropriate decisions and actions, and within the limited

system resources we have available. These realizable

* intentions are what we call system purposes.
0

This section examines the purposes of the aeromedical

transportation system. Purposes have both realistic and

ethical components, which need to be identified. The cate-

gory of purpose unfolds further into subcategories that

provide a convenient classification scheme, and more impor-

tantly, a means of explicitly linking our client service

intentions with measurements of how well we achieve those

V intentions- Finally, we will look at prospects for

*. changing the way in which purposes are pursued, since the

essential concern of the systems approac. is ultimately

practical: designing a planning system we can reasonably

0 expect to implement.

in most studies, this section would be Labled "objec-

tives". Every teleogriica.i purposeful) social system has

I '
-S

0
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tnem, although we often find them pursuinq multiple,

ccr Lictiny, often vaguely stated, or even misleading or

unstated, purposes. Even when carefully and officially

articulated, they are not necessarily pursued in an equally

c,-,herent fashion. Recalling our discussion of the DOD

readiness and benefit objectives, the Defense Resource

Management Study concluded that

DOD responsibility for the benefit mission is
assigned by Title 10, United States Code, Chapter
55. DOD Directive 5136.1 delegates to the Assistant

.d Secretary of Defense (Health Affairs) chp authority
to " issue . . regulations . to fulf i the
Secretary of Defense responsibility to administer

* ... " the benefit mission.

* Army, Navy and Air Force regulations :nat assign
m ssions and functions to the respective Surgeons
General and to commanders of service medical
commands and hospitals fail to assign explicitly
Vhe benefit mission. in certain instances the
regulations, by inference, implicitly assign the
benefit mission. But nowhere in service regulations

-. was the DRMS able to find explicit assignment of
the benefit mission to health care managers.

'-he absence of an explicit health benefit mission
-. leads to an unnecessarily convoluted train of logic

;In the justification of resources needed to
accomplish the benefit mission. [DRMS79,p.82]

*This illustrates one important distinction among system

purposes: what is stated versus what is real (and often
4.

nidden or unstated). A major problem or fallacy associated

Sidtn identifying purposes is to overemphasize obvious pur-

"oses. Cne common statement cf purpose for the aeromedical

-ransportation system is to move patients as rapidly as

possibole. But what the s;ystem seems to be really trying to

do is to move patients so that

I
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.1 Patients recover more quickly (for their benefit);
2) Patient comfort is increased (for their benefit);

3) They return to duty sooner (increasing readiness);
4) The planning system is exercised (maintaining

readiness).

Other purposes are expressly stated, such as main-

-aining a level of system operation sufficient to keep all

system employees and decision makers trained in their

respective roles, when other unstated or hidden purposes

may be involved. The conflict is between what the system

is really trying to accomplish and what it is willing to

reveal about those aims. The organization sets and meets

* training goals to achieve the readiness objective, an

annually requests resources resources for that purpose.

Alternatively, we could assert that formulating the same

training goals every year results in constant annual budget

-. proposals, which in turn avoids all the additional work and

possible scrutiny involved in changing them. [WILD75)

Unless the request made ten years ago correctly related

training needs to resource requirements, which suggests

either that system managers possessed an exact causal model

of the training process or made particularly fortuitous

guesses, the circumstantial evidence is that minimizing

effort and controversy is one underlying purpose served.

Two further distinctions can b- made regarding system

V purposes. First, among multiple goals, an organization may

knowingly sacrifice or i.gnore some goals in order to pursue

others, and its managers may or may not realize the

4,'-
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opportunity costs involved. Somehow, organizations

(:vertlv or not) order, ranK, ciassify, or sequentially

meet purposes in order of imporcance.

Secondly, in our statement of the category of purpose,

we distinguished between wnat is and what ought to be

pursued, what we might label the differences between the

real and legitimate purposes of the system. For example,

system managers must frequently explain past planning

decisions that do not seem to achieve an acceptable level

of productivity. When the Government Accounting Office and

ro'he Air Force Audit Agency both held that some flights were

dispatched at considerable expense to serve an unacceptably

small number of patients [DEPA78b], system managers

responded by imposing restrictions (such as requiring that

a minimum number of patients be served in order to launch

an air-craft) that had the apparent result of increased

effic-iency, even though they realized that service would

be sacrificed. The externally imposed efficiency target

was achieved, but at the expense of more legitimate goals.

it is very useful to discuss organizational purposes by

unfouing them into a series of subcategories which we

earii,-r called goals, objectives, and ideals. In their

,Iuar definitions, they differ by time horizon, degrees of

attainment or both. We define them somewhat differently.



* 70

,%

.a We define goals as perceptions of a planner who takes

most aspects of a plan to be given. "Targets" might be a

preferable synonym. Goals make the relationships among

clients, purposes and performance measures readily

apparent. Apparent also are data requirements (compiled

from records of past system behavior and careful recording

of current events), and the decision outcomes that will

- increase or decrease attainment. in goal planning, the

planner views virtually everything as unchangeable.

in objective planning, which we illustrated in our LP

5discussion, the "givens" are embedded in a Larger framework

of constraints. LP emphasizes bounding a planning problem

to determine feasible and realistic alternatives. Unified

- measures of relevant costs and benefits are used to find

the "best" point within a feasible range of choice. One

currently emphasized aeromedical transportation objective

is to reduce patient overnight enroute stops, given all

resource limitations, patient handling rules, and other

factors. The desired outcome is not to reduce overnight

A' stops to some acceptable level, but to achieve the lowest

level possible, given all constraints.

Ideals are purposes that could hold ;: ffeasibtlity and

reality constraints were removed or ignored. [CHUR79J The

principal concern of ideal planning is whole system

improvement, which nece.zsarily must be measured in terms of

0."".,
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system ideals. One ideal might be a perfectly designed

aeromedical system, but that would depend on designing all

defense systems perfectly. The only reality that would
-'

4. oermit such a perfect design is one in which there is no

war, assuming a perfectly functioning defense produced that

end. Since most of us seem inclined to accept war as an

4i neviable reality, there is little likelihood of carrying

out ideal defense planning if we can't reject war as a

given. But beyond cur own cognitive limitations, there may

o a more fundamental problem: valid ideals may not exist.

Churchman argues out that no completely defensible ideals

nave ever been shown. Even if we could specify one, we can

inevitably find another that conflicts with it; ideals

serving all of humanity necessarily conflict with those

directed toward each individual. [CHUR79]

Beyond talking about purposes, we needed to identify

some representative ones to incorporate in our system

model. But as Karl Borch astutely observed, "in real life,

it may well be more difficult to decide what one should

maximize, than to carry out the actual computations in the

maximizing process." [BORC70,p.51 Our bias was to focus on

real purposes the organization seemed intent on pursuing

tnat, ;n :ur Judgement, they ought to pursue.

% ~ :n March, 1L983, -he Military Airlift Command Surgeon

General's staff and rh parent organization, the 375th

Aercmedical Airlift Wing, ir-ntly studied a number of
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current planning problems. [DEPA83] From their final study

report, we have derived the following implied or explicitly

stated goals and objectives:

Concern Goal Objective

36 per cent of all None stated; Minimize the
patients remained "0 per cent is number of patients
overnight at least unresonable; 36 required to remain
once in CY82. per cent is too overnight (RON).

high."

Demand for patient No increase in Accomodate all new
tansfers increased the number of movement require-
approximately 50 % patients required ments without more
from calendar year to RON. employees or air-
1978 to 1982. craft.

40 CONUS medical Add 21 stops to Eliminate trips by

treatment facilities those routinely ground transporta-
(MTFs) without included in the tion of more than
airfields must daily schedule. one hour.
routinely drive
patients to meet
flights.

Provide initial Fly 120 hours on Maintain a maximum
pilot checkouts local flights at level of qualified
and advanced the central base. flight crews.
training.

Their concern for patient welfare is apparent. In

addition to these purposes, the study also indicated that,

despite significant increases in the number of patients

transferred, system managers wanted to continue to provide

direct point-to-point service to patients in urgent and

priority categories or who have special needs requiring

such service. Recognizing that additional daily flights

would not be feasible without more crews, which Congress

S."
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must approve and fund, they wanted to achieve these ends

Mwthcut changing the fixed, six-mission-per-cai schedule.

We were particularly interested in the lack of any eco-

nomic goals or objectives, such as minimizing fuel use.

zuei economy is an area of concern to DOD, since defense is

-he dominant federal sector fuel consumer (97 per cent in 

FY80), and aircraft operations used over 65 per cent of all

DOD petroleum in FY80. 'DEPA81] As we note later in

discussing systemn resources, constant fuei prices are

partly responsible. Another explanation is that maximum,

rather than optimum, fuel loads are carried, in order to

-Ave maximum flexibility to respond to changing demands,

particularly cases requiring immediate pickup and delivery.

We also noted that the annual budget is Just about

exactly exhausted each year. The reason is that the stan-

dard practice dictated by higher authorities is to treat

the budget as an amount not to be exceeded, and not to be

underused by more than two per cent. Not only that, while

manual flight scheduling methods might attempt to minimize

the length of some flights for patient comfort and other

reasons, schedulers lacked any training in or automated '

support for systematic route optimization. It was apparent

that purposes benefiting the taxpayer-client (who provide

:he annual resource budget) were not actively pursued, even

though we argued in the last section that they ought to be.

Changing long-standing institutional practices such as

*~J....~sS ~ ~ r d-. ~ .'w a' *~ *,pa * . . ~ S -
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pricing fuel uniformly and exhausting budgets completely,,

which are imposed by higher authorities outside the

organization, would be difficult, particularly since a

% concensus among all working-level organizations (for many

% of whom preserving these practices would be to their

advantage) would probably be required.

While we do not propose any aeromedical transportation

system ideals, we can at least adopt the ideal planning

practice of looking beyond whatever "givens" we can,

attempting to determine what level of service the system

could achieve if some "realities" were (] fferent. Aero-

medical planners, for example, assume that facilities where

patients can be accomodated overnight are fixed both in

numbers and locations. But in assuming such realities,

they may overlook other possibilities. Instead of
questioning facility quantity or mobility, it might be use-

fui to determine if they should be used at all. Their

ixistence may influence planners to think that they are

absolutely necessary, when more aircraft might completely

eliminate the need for them, and lead to significant whole

system improvement. As another example, self-imposed

scheduling restrictions, based on such perceived realities

as maintenance contracts and fixed fleet size, dictate the

same number of missions each day, ev(n thouah patient

demand varies widely over different cays of the week.

Varying the number of daily missions may lead to more

responsive service.
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Before we conclude our discussion -r svstem purposes,

we need t examine the impIementation potential of objec-

7ve plann ing. Objective planning approaches to public

sector problems involving optimization nave not enjoyed

mu.ch success, oecaise as Lowe and Moryacas observe,

_n affluent sccieties ano .n normal imes, the
orice of nonoprimal nehavior may be toleraoie. How-
ever, when a ... national emergency exists, efforts
are launched with a view to promoting efficiency
and curtailing needless expenditures.[LOWE75,p.283]

We will have more to say in our discussion of the sys-

tem's environment about the lack of incentives to pursue

-oectives optimally. Our concern here is pragmatic: sys-

* rem decision maKers nave not developed optimization prac-

_ices or habits, as evidenced by the current lack of capa-

oility to search for better or the best solutions, and,

r,=e significantly, they apparently lack interest in

=odng one. r. this study, we found that the underlying

ouosystem problems are so inherently difficult, that unless

mne organization develops and uses (or at least tests) a

methodology able to find more efficient allocations of its

resources, there is little likelihood that it would be able

- after a crisis begins. Improving the planning system

seems to us to be a purpose system managers Legitimately

ought to pursue. (And, we recognize immediately the paradox
Souirselves as olanners making decisions that prescribe

motives for tne system).

4Wi. .4 A V Lt C~)T~-
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' 2.2.3 Measures of Performance. On the surface, the DOD med- %

ical transportation problem seems very simple. Whenever a

patient and the medical service he or she needs are phys-

ically separated in space, the service has no value until

the two are brought together, and the service attains its

greatest value when it is administered when it is needed.

Trans-portation increases both the time and place utility

of med-ical care by moving patients to treatment, or vice

versa, with minimum delay.

Medical transportation planners use information on

where patients need to go and when they need to be there to

devise aircraft schedules that will deliver patients to

their destinations as quickly as possible. Determining how

well the planning function performs requires us to specify

an adequate measure of how well the system meets the needs

of its clients. This turns out to be quite difficult

because of inherent conflicts that exist in most, if not

all, mass transportation systems. The divergent interests

of various client groups create conflicts. MinimizI ng

aeromedical transportation costs would best serve the

interests of taxpayer-citizen ciients, while minimizinq

delays and discomfort is more important to patients. To

choose one measure (or even several) is to decide how to

allocate system costs and benefits among groups, and amona

individual clients. :n the presence of multiple nu
S

conflicting goals and ob tives, -;eLecting one 'best-,

.
.+
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measure(s) is virtually impossible. In this section we

illustrate a number of inherent conflicts. We conclude

that two standards ought to be considered, minimizing

patient transfer delays and total transportation time.

The central concern of economics is allocatinj scarce

resources to satisfy human wants. However, economics has

had remarkably little to say about transportation.

Usually, economics separates the production and consumption

of goods and services. As a productive process, trans-

portation services transport, rather than transform, commo-

dities or people. Unusually, (though not uniquely), trans-

portation produces a service that requires the consumer to

supply one of the input factors (his time) (for which there

is an opportunity cost that may be useful in assessing the

value of the service) which greatly complicates assessing

costs and benefits to consumer and producer. The DOD case

is even more difficult, because the producer, not the con-

sumer, pays for the service!

3
-eoc B

10
10 A

Depot , 0

Figure 2.2. Multi-user transportation service example.
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To illustrate the performance measurement problem, con-

sider the following multiple user transportation service

-. example. Suppose we have three passengers located at the

depot, one vehicle, and the route with travel times anno-

tated in Figure 2.2. Points A, B, and C represent the

respective stops of the passengers. If the vehicle's route

is frcm the depot to the points in the order suggested by

the arrows, or arcs, then three trips are 'produced':

MARGINAL
TRIP COST

DURATION (Vehicle Time,
. TRIPS (Minutes) in Minutes)

1 (Depot-->A) 10 10
2 (Depot-->A-->B) 15 5
3 (Depot-->A-->B-->C) 18 3

In terms of vehicle time and passenger riding time, we

observe two differing measures of the productivity of the

route. Marginal vehicle time decreases with each trip,

while the marginal cumulative passenger transit time

increases; the amounts depend on the particular sequence.

If, in this example, the direct routes from the depot

to points B and C required ten minutes of vehicle travel

time each, then for the route above, the first passenger

spends no time in excess of the time required for a direct

trip. But, the second and third passengers endure an

additional five and eight minutes respectively of excess

riding time over direct deLiveries. This illustrates a

0dilemma common to mass transportation systems known as

-0 " . .
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Cumujative Total

Passenger 
Vehicle

Transit 
Time

Time

45 30

30 20 ,

15 10

1 Passengers Served Passengers Served

Figure 2.3. Vehicle routing productivity.

congestion, in which, under certain conditions, one or more

passengers experience excess riding time as more passengers

are served. There are two major problems created by the

congestion phenomenon: determining the cost of excess

riding time congestion causes, and finding an appropriate

measure that will choose, from a set of prospective routes,

one that provides the best service to all passengers.

Suppose in our three-passenger problem, the depot and

destinations are arrayed in the Euclidian plane of unit

squares in Figure 2.4. The point-to-point distances in

rable 2.2 result. We can define two types of routes, open

and closed tours, as those that depart the depot, visit

* each destination once (and only once) and terminate at the
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last destination or at the depot respectively. The tree in

Figure 2.5 enumerates all possible open tours; closed tours

have an additional segment from the last stop to the depot.

2

3

_ _ _ _ Depot

*

Figure 2.4. Three-passenger transportation example.

TABLE 2.2

POINT-TO-POINT DISTANCES

TO D 1 2 3

1

D - 1.411.111.0

1 1.4 - 2.3 1.8

* FROM

2 1.1 2.3 - .8

3 1.0 1.8 0.8 -

AS we can see in Table 2.3, route IV is the minimal

vehicle time open tour, one of two minimal time closed
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--

Figure 2.5. All three-passenger delivery routes.

tours (that are equivalent in length, and exactly opposite

in order) , and the minimum total passenger service time

I tour. But, note that route III, the longest open tour, one

~of two maximum length closed tours, and the maximum total

serice time tour, affords service at least as direct as

route IV to passenger 2, and more direct service to

passenger 1. For comparison, Table 2.3 gives the charac-

teristics of three separate round trips as route VII.

'. Besides separate round trips and tours, a third possi-

" bility exists that combines these two types: multiple trips

with each serving one or more passengers. Two trips,

SDepost-->3-->2-->Depot, and Depot--> -- >Depot, require 5.7

. units of total vehicle time, .6 more than route IV. For

ta i 1.76 per cent increase, cumulative on-board time is

teitc ftre eaaerudtrposrueVI
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TABLE 2.3

ROUTING MEASURES OF PERFORMANCE

Route

Measures I II III IV V VI Vii

Closed Tour Length 5.1 5.5 6.2 5.1 6.2 5.5 7.0
Open Tour Length 4.0 4.5 5.2 3.7* 5.1 4.1 N/A

. Delivery Times for:

Passenaer 1 1.4* 1.4* 3. 4 3.7 2.8 4.1 1.4*
Passenger 2 4.0 3.7 1.i* 1.1* 5.1 1.8 i.1*
Passenger 3 3.2 4.5 5.2 1.9 1.0* 1.0* 1.0*

Cumulative Time
On-board 8.6 9.6 9.7 6.7* 8.9 6. 3.5*

Largest Direct

A Delivery Deviation 2.9 3.5 4.2 2.3* 3.3 2.7 0.0*

reduced to 4.2 units, only .7 above direct delivery, and

2.5 units (69.56 per cent) less than on route IV.

This simple example illustrates two important points.

First, no measure can be the best for both vehicle utili-

zation and individual passenger service. In some

instances, the longest route provides equal or better ser-

vice to all passengers than the shortest. Secondly, a

strategy that searches for only one route type (tours, for

instance) may overlook routing solutions that are only

moderately more expensive in terms of vehicle operation,

0 but provide much better service to individual passengers.

In all instances except direct delivery, some passengers
"."

necessarily endure excess riding time.

* S



83

Another example more closely related to patient

transportation reinforces these conclusions. In Figure 2.6

we denict what we define in Chapter 4 as the mixed service

oroblem, which requires stops to both pick up and deliver

each passenger. A node labeled +n designates the origin of

passenger n, and -n his destination. Observing the logical

restriction that we must visit a passenger's origin before

his destination, 90 feasible closed tours can be

constructed, versus 720 (6!) without the order restriction.

*2

22

4 - Depot

4 5 C

-3I

" . Figure 2.6. Three-patient mixed service example.

* Six routes minimize total passenger riding time, while

two minimize total vehicle time. One of those two, route

VII, comes extremely close to minimizing all criteria.

* Route Sequence

% 11 D-->+I-->-I-->+3-->-3-->+2--,>-2-->D

TVSV D-->+3-->-3-->+I-->-I-->+2-->-2-->D
- 711 D-->+ 3-->- 3-- >+ 2-->-2-->+ !-->-!-->D

• .m<VII D-->+2-->-2-->+3-->-rI-->-3-->-l-->Di!V
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TABLE 2.4

MIXED-SERVICE EXAMPLE DISTANCES

TO D 1 2 3 4 5 6

FROM D 1 1. .7 .7 .9

(-1) 1 1.4 2.3 1.811.5 .81 2.2

(-2) 2 1.1 2.3 - .8 1.6 1.8 1.2

(+2) 3 1.0 0.8 - 1.7 L. 5 !1.6

(+1) 4 .7 1.5 1.6 1.7 - .8 .9

(-3) 5 .7 .8 1.8 1.5 .8 - 1.6

* (+3) 6 .9 2.2 1.2 1.6 .9 1.61 -

TABLE 2.5

MIXED SERVICE ROUTING MEASURES OF PERFORMANCE

Route

Measures I II III IV V VI VII

Closed Tour Length 8.3 8.0 9.4 8.3 8.5 9.3 6 9*
Open Tour Length 7.6 6.9 8.7 6.9 7.4 7.9 5.5*

*. Delivery Times for:
* Passenger 1 1.5* 1.5* 1.5* 1.5* 1.5* 1.5* 1.6

Passenger 2 .8* .8* .8* .8* .8* .8* .8*
Passenger 3 1.6* 1.6* 1.6* 1.6* 1.6* 1.6* 1.7

Cumulative Time
On-board 3.9* 3.9* 3.9* 3.9* 3.9* 3.9* 4.1

* Largest Direct
- Delivery Deviation 0.0* 0.0* 0.0* 0.0* 0.0* 0.0* 0.L

.....

LV

0,
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Heuristics that do not maximize or minimize a measure

of performance can select particularly unsuitable routings.

A simple rule-of-thumb, making all pickups first, and then

all deliveries, finds the worst solution using total

passenger time as the criterion. This suggests two attrac-

sive properties of optimization approaches. First, regard-

less f which criterion is chosen, there would be no doubt

as to how 'far' from optimality a heuristically-derived

solution might be. And, if the best solutions can be found

with respect to several criteria, techniques exist that can,

* aid in the search for compromise solutions, with the direct

involvement of the decision maker.

The problem, even with optimization techniques, as

these simple examples show, is that, depending upon the

criteria chosen, widely different solutions may optimize

toS? . Yt precisely rhp cho - of the criter-

ion and not whether we can optimize it that causes the most

d~fficulty. The critical difference in service time

crizeria, for example, depends upon wh -hc w' I]de

-venicle, total or individual passenger service time, or a

combination, in the criteria, and what other stipulations

we impose (e.g., solutions must be tours). If we choose

veniLcle time exclusively, in the transportation service

provider's interest, routes should minimize vehicle time,

if, as is often the case, that is the major determinant of
- faor costs. Since factor costs on tne provider's side

Sq
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should be calculable using appropriate resource accounting

data, this would not seem a difficult measure to implement.

Criteria based upon the interests of the service user

are more difficult to derive. Specifically, we need to be

able to determine the factor cost of the patient's time and

a method to handle tradeoffs among users. Studies have

inconclusively attempted to impute the value of travei

time, because of fundamentally difficuit prcniems. [LOWE75]

First, there is no clear way to associate labor cost

and travel time. Military patients are salaried (not self-

employed, nor employed by another organization) and there-

fore are traveling on their employer's time, not their own.

There is no opportunity cost to them, no liesure versus

labor choice. From their employer's viewpoint, there is a

cost associated with the loss of productivity during treat-

ment, including the time they spend in-transit. However,

there is considerable reluctance to make service a function

of relative importance -- generals before privates, if you

will -- a practice that would create major ethical problems

in equitably distributing benefits.

There are related problems with a salary as factor cost

approach. Individual value to the organizatinn is diffi-

cult to assess, both in general, and specifically, due to

the practice of paying DOD employees within very broad

*l categories (primarily by military rank and longevity).

0-
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Other -:.ent classes kretirees and dependents) cannot be

me,.;ured by employee factor cost means, since their travel

"ime has no meaning in terms of lost DOD producti>vity.

Market choice methods do not seem applicable. Patients

c; not MaKe the Kinds of assesments that, say, commuters do

;:'.en they can evaluate the speed, convenience, comfort and

, or alternative travel modes, factIrs which nave

'-ermutted valuing transit time in other pianning contexts.

A.lthough there may be instances where --ravel reoresents a
"a..

_-oarticularly valuable alternative, as it does to rerired

depundents who might not receive any free care unless they

:rave-L, we could not visualize a workable market-choice

-=proach to factor costing.

Anothpr possibility is to ignore the question of cost,

and examine just the sequencing aspect of patient movement.

Tha_ is, we could view an aeromedical aircraft as a job-

shop processor, and patient movements as a series of jobs

, to be processed. A flight is, after all, a sequence of

* processing steps, each with a finite length, starting

point, and ending point. The fact is that scheduling the-

*"[ -ory does not value the completion of individual jobs, and

* nstead measures the value of any sequence in aggregate

-erms. in schedule-theoretic measures, a seqtence would be

-va'uated to determine how many patients arrived within the

* prescribed criterion for delivery after being picked up, or

the number of days the latest patient arrived at his

NN a)!
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destination, but not for the cost or impact on each indi-

viduai patient.

For the system purposes we proposed earlier to

represent in our system model, we propose two simple mea-

sures. The primary objective should be to minimize patient

delays enroute, which we can measure by summing the number

-f overnight delays patients experience after beinq picKed

up. The principal beneficiary is the patient, although

this would also reduce overnignt facility operating cost.

And, this measure favors direct delivery, which is partic-

*ularly important in wartime operation.

Whenever possible, and without increasing the number of

overnight stays, planners should attempt to find minimum

cost routes, that lower aircraft operating costs and move

patients, at least in aggregate terms, to their desti-

nations more quickly. While this seems primarily oriented

/ toward taxpayer-client benefit, the wartime need for maxi-

mum utilization of aircraft would be served by having plan-

ners systematically finding shortest routes.

We propose that the concepts of muiEiple objective

(MOLP) and goal linear programming (GP) be merged; that the

Sor-:: nal multiple goals, and not derivative ai targets, be

-Dptimized, as in MOLP, but where the primary objective of

minimizing overnight stays preempts the cost minimization.
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2.2.4 Environment. In the systems literature, identifying

a system's environment critically depends )n determininq

whether tne system is open or closed. In open systems, the

lack of a definable boundary implies that nc environment

exists, while the environment of a closed system consists

-f everything that Lies outside ooundaries enclosing he

system. Beyond those boundaries, beyond the control of the

system's decision makers, there are "things" m.at determine

o influence system performance, and hence, The effec-

7iveness of the system relative to the ciient.

in operations research problems, environmental elements

are often conveniently labeled "fixed" or "given". They

Simpiv the existence of other entities within the boundaries

-that can be controlled, which we have defined as

"resources". There seems to be little disagreement that

social systems have both environments and resources. Since

these elements bound the actions that decision makers may

take, the treatment of the environment is typically a

search for the the "correct" boundaries (geographic,

organizational, budgetary, and technological, to name a

few) that constrain action.

i :t would seem a fairly simple matter to decide if any-
Shing 1.; either a resource or an element in the environment

of a system. By asking the question, "Does it matter to

clients?", we could create two exclusive classes. By then

.1
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oartitioning the one containing resources and environmental

elements by asking the question, "Can we control it?", the

idenrification problem would be solved.

.n the aeromedical transportation problem, aircraft are

resources by this definition, since they obviously matter

to and are controlled by the organization. To obtain more,

which the organization currently wants to do, requires

Congressional budgetary authorization and appropriation,

*1. wnich lie outside the aeromedical organizational boundary.

Since the number of aircraft (fleet size) matters, but

* cannot be controlled, fleet size is in the environment.

This classification scheme fits well with objective-

planning methods such as LP. "Given" the maximum fleet

size of eleven aircraft in the domestic system, we could

combine these resource levels, and coefficients specifying

environmental limits to our using them, into constraint

expressions that form the mathematical boundaries of our

linear programming model. Planners could then directly

determine the feasibility of any action by testing whether

or not it lies within these feasible boundaries.

In effect, then, these descriptors of environmental

• entities that bound action create a one-to-one corres-

pondence between restrictions or limits we observe or
4. .%.

experience in the real world and constraint, in the LP.

* There are many entities over which we have little or no,1
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control, but which matter, such as maximum aircraft speed,

patient movement demand, and aircraft patient-carrying

capacity. Once we have specified all important corres-

pondences, our LP would provide the analytical means to

control the use of our resources, within the amounts we

.< a.nave available and the limits of the technology governing

:heir use.

But is the process as simple as it sounds? The

oeginning of the chapter described the DOD aeromedical sys-

rem as part of a series of successively larger and more
0

C encompassing organizational systems. Precisely which one

do we choose to study? Should organizational entities be

* 'considered system entities? And perhaps most importantly,

why should we be concerned about the choice?

Unfortunately, there are no completely defensible

answers to these questions. Any answers would obviously

involve strong systemic judgements. We can say, however,

that there are a number of dangers in ignoring them:

1) Assuming that what we have observed is ail
that is relevant may lead to serious planning
miscalculations.

2) Failing to account for the effect of linkages
between system components and the environment
may cause planners to make decisions that
seriously reduce service to clients, or waste

.resources unnecessarily.

3) Taking something as "fixed", unchangeable, or
ooth, will not allow us to move beyond objec-
i::ve to ideal planning.

willa-
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In the case of the first danger, something potentially

useful may be absent from the system's environment that may

-I be highly useful. In the aeromedical system, for example,

no pricing mechanism forces decision makers or service

users to choose among alternatives on the basis of cost to

prevent uneconomical operations. There is an even more

fundamental reason for considering this problem of rele-

vance and comprehensiveness. As we said earlier, LP models

contain very strong assumptions about the nature of real-

ity. One of them is that an LP model contains everything

relevant to a problem, and nothing irrelevant or erroneous.

We said that plans generated by an LP should specify where

every entity in a system should be and when. Because our

ability to include all entities and their alternate paths

through time and space is limited, we conceded that somehow

A we have to limit the scope of the planning problem. The

major planning question, then, is ultimately a highly prac-

tical one: "How large a problem are we capable of

modeling?" In attempting to capture the most salient

features of the aeromedical system's environment, that

question becomes: "How much of reality can we, and should

we, incorporate in our model?"

In the second case, when we attempt to solve a partic-

ular system problem, we have to be aware that it can't be

solved on its own basis without possibly creatina other

problems, because of linkages that exist among system

U'
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entities. For example, suppose we presumed that one major

problem was a lack of aircraft. The intuitively appealing

(and typically adopted) answer would be to buy more. But

as Graham shows in a series of very clever examples

LGRAH79], under certain conditions, more or faster vehicles

can actually degrade system performance because of

precedence relationships that exist between system

entities. Churchman calls this the environmental fallacy:

Sf "x" is "too low" or "too high", we have to resist che

impulse to change "x" without adequately taking into

* account unintended and potentially serious side effects.

The third danger is perhaps the most serious. Even

when attempting to make the case that more aircraft are

needed, we noticed that the organization assumed that

traditional scheduling practices must continue, which may

be a more significant source of their service problems than

fleet size. They never questioned such givens as that the

system ought to continue to exist, that the right clients

were being served, with the right resources, and so forth.

By failing to identify all relevant constraints, and then

look beyond them for solutions that are, by current

standards, infeasible, there is little hope for progress.

. Selecting those things which constitute the environment

-s particularly important in defining the data requirements

* of our study. The word data itself is derived from the

Latin for "that which is given". As we have already noted

,0
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in our discussion of the paradox of system data, the combi-

nation of our actions and environmental factors over which

we have no control will jointly determine outcomes that

will generate data different from the case where we take a

different (or no) action. This suggests that we must tem-

per our reliance on historical data with a judgement as to

how well it can forecast the performance of the system we

are very likely going to change.

The environment we select is interre lted with our

g choice of the system's decision makers. Decisions are

• taken for the purpose of specifying action, but actions are

* restricted to those things over which the decision maker

has control. In ideal planning, the principal concern is

the decision maker's Weltenshaaung. or world view, and what

it contains in terms of perceived environmental realities,

and the values he places on outcomes that are co-produced

by the environment, his decisions, and system actions.

In the remainder of this section, we will discuss what

we have observed to be particularly important elements of

the aeromedical system environment. In particular, we will

indicate the extent to which they might be changed and the

dangers attendant in doing so or failing to do so.

One aid to identifying a system's environment is to

determine what is not "out there". The absence in the

environment of the DOD domestic aeromedical system of a
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number of influences is significant. The DOD system is

unique; there are no other organizations like it. That

means that there are no successful role models to emulate,

nor unsuccessful examples to learn from either. As one

practical consequence, uniqueness means that system vendors

must resort to expensive, custom fabrication to provide

operating equipment and supplies.

In this monopoly-monopsony relationsnip between a

single server and a single collective customer, there is no

competition on either the supply or demand side. The sys-I
cem does not compete with private-sector, market-oriented

Drganizations. And, funding for DOD aeromedical service is

supplied by the provider, not the user. (Only in rare

circumstances are the patients or their sponsoring organ-

izations charged for their transportation). There aren't

any pricing cues from either market or internal pricing

systems.16  Military hospitals do have budgets that can be

used to contract for services at nearby civilian hospitals

for certain patients, as an alternative to moving them to

another military facility. However, aeomedical service is

a cost-free alternative, particularly when contractual ser-

vices budgets are limited or exhausted.I
Furthermore, the organization is compelled to use all

of irs annual obligational autnority (expressed below in

6 flying hour units). Despite the fact that DOD operations,

under the auspices of the Program-Planning-Budgeting System

1 $,. ' %'
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(PPBS), are supposed to be ends or missions oriented, the

annual program is both justified and managed in terms of

resources. Where the program is supposedly driven by the

combination of wartime training and patient service needs,

it is guaged by the means-oriented measure of flying hours

used. Assuming that, since all hours were used, all

training and patient service tasks were met (whichi other

internal reporting systems confirm), we can probably con-

clude that the mission was accomplished each year. What is

lacking, however, is any idea of how much less, in

resources consumed, might have been used to reach the same

end. That is not to condemn the organization, since it

must use the PPBS process, which Wildavsky asserts never

has and probably never will be able to produce ends-

oriented measures of performance. [WILD75]

Annual CONUS Aeromedical Flying Hour Programs

Fiscal Year Authorized Used Percentage
1977 18216 17900 98.1
1978 18216 18250 100.2
1979 18216 17983 98.7
1980 18216 18093 99.3
1981 18216 17513 96.1

Source: [JONE82]

There is no compelling reason to economize. No board

of directors or stockholders demand sound performance

measurable in terms of profits or return on investment.

V There are no financial rewards to managerial initiatives to

reduce costs or budgets. in fact, there are strong disin-

centives. Slack capacity provides the means to respond to

.4~ 0 ' Ir eU ,U N;\~
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unforseen contingencies (and makes planning easier);

maintaining slack becomes an important goal. Annual budget

Level an-i organizational size are closely correlated; cost

reductions or savings can lead to loss of corporate size

and power. Continued Congressional funding means continued

existence; funding reductions, then, are the organization's

most serious environmental threat.

So we find a curious twist to the envir.nmcntal [denti-

fication problem. It is not enouyh that we simply ensure

S that we not overlook entities which do exist; we need to

identify important environmental forces that are absent.

Not rinaing mechanisms that force the aeromedical organi-

zation to operate effectively does not mean they should not

be compelled to operate effectively and efficiently.

Rather, it means that creating the required incentive-

producing mechanisms is part of the design problem, which,

in effect says that "designing" the enviroment is a neces-

sary planning problem.

.%

0 A number of exogenous, or at best only partially

controllable, factors constrain the operation of the sys-

.em. Among the more important ones are patient demand,

* fleet size, rules and regulations, and aircraft operating

limitations. As we discuss each of these we will emphasize

-. J the way in which they affect system performance, their

4
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impact on the planning problem, and past management actions

and future prospects to mitigate them.

Patient demand is determined by a number of factors.

1) At each facility, budget levels and use, new
construction and closures, and the creation and
elimination of treatment programs all signif-
icantly affect the need to send patients to
other hospitals for care.

2) Changes in beneficiary population size and
location, entitlements, and program policies
also change demand patterns. For example, as
dependents and retirees have been required to

,my pay a larger share of CHAMPUS costs, more haveelected to transfer rather than pay.

3) Demand growth has steadily increased 4--5 per
*• cent for the past six years. [JONE82]

4) Emergency movements increased significantly
during one five-year study period, particularly
in cases with neonatal complications, burns and
neurological problems; that they had even sur-
vived to be moved was due largely to signif-
icant advances in treatment methods. [JOHN76]

Medical needs are inherently stochastic, and despite some

control measures, such as ASMRO regul;7tion and some treat-

ment advance scheduling, it cannot be completely controlled

or even precisely estimated. Patient transportation

* _demands are therefore handled on a demand-responsive,

y rather than a fixed-schedule, basis. Where some control is

-' possible, despite evidence of the adverse effects of ser-

* vice parochialism and the lack of strict criteria to mini-

mize interregional transfers, no measures have been taken

to eliminate these practices during the time we have

studied the organization. Most significanty, the
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organization lacks the modeling capability to effectively

argue its case for rules governing patient movement that

would facilitate better service.

Fleet size tends to be fixed (or diminishing) in the

short run, for a number of reasons:

1) Aircraft purchases require long lead times,
because of the costs involved, extensive speci-
fication, selection and approval actions, and
lengthy construction and outfitting.

2) Other organizations handle most of these
procurement actions. Most importantly, final
purchase authority lies outside the organi-
zation.

3) Only when the useful life (typically 30 yearsor more) is effectively exhausted, the tech-

nology so outmoded, or spare parts, fuel or
maintenance support so expensive or difficult
to obtain is an aircraft replaced, particularly
non-combat aircraft.

4) Single or small lot purchases of aircraft
requiring unique or special outfitting can be
prohibitively expensive.

5) Any purchase requires convincing arguments and
a demonstrated need over other requirements,
both within the Airlift Command and among all
other Air Force commands, to be able to compete
for limited acquisition dollars.

Only two aircraft models have been used exclusively for

aeromedical transportation. The current all-jet fleet

replaced an aging and technologically obsolete piston-

engined predecessor shortly before the Air Force retired

all non-jet aircraft for lack of sufficient fuel supplies.

The current fleet of 21 C-9A's was purchased between

1967 and 1971. No other aircraft have been purchased since
4.
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then. In fact, decision makers at higher Air Force levels

reassigned two aircraft to non-medical uses. A third air-

craft crashed and was totally destroyed. Six aircraft are

dedicated to aeromedical use in Europe and in the Far East.

Until the current fleet approaches the end of its service-

able life at least ten years from now, the likelihood of

fleet expansion or replacement is very low.

Temporarily expanding capacity by using the C-141 for

high density trunk routes interconnecting major regional

facilities is being considered. However, the C-141 is two

* to three times more expensive to operate, per flying hour,

than the C-9. The C-141 carries patients less comfortably

and lacks much of the specialized medical equipment avail-

able on the C-9. Leasing commercial aircraft is not

particularly feasible, since they lack necessary elec-

trical, oxygen and vacuum systems, and would have to be

modified to carry patients on litters. Permanently modi-

fiying commercial airliners and cargo airplanes that could

.be quickly converted to carry patients in wartime (only)

O has been proposed, but never done. Small jets used primar-

ily to transport senior officers have air ambulance capa-

bility, bt are not- used routinely for that purpose.

An extensive set of policies, directives, regulations

and standard operating procedures govern system operation.

The organization participates in formulating and defending

budget proposals, and in seeking changes to allocations of

% %
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approved budgets, but the annual spending limit imposed by

the US Congress is binding by law. The Congress monitors

adherance to such limits, and on ocassion directs its

;nvestigative arm, the Government Accounting Office, to

examine the organizaton's use of its resources. [JONE82]

Federal Aviation Administration (FAA) regulations, or

-ipproved (and usually more restrictive) Air Force suosti-

zutes govern flight operations, crew qualification, and

aircraft airworthiness certification. DOD proscribes the

authorized uses of the airplanes, particularly patient

27overrent eligibility criteria and system performance stan-

l'ards. FAA rules are amplified by Air Force flight rules

nd operational procedures. These in turn are expanded by

ne Military Airlift Command to establish mission manage-

4" ment, crew training and qualification, flight planning, and

patient service requirements, ranging froi the very broad

,7-- the very specific. Particularly since the system's

passengers are patients, these rules and regulations are

far more restrictive than the technological limitations of

* the aircraft require.

.*'. The following are some of the more significant rules

* qcverning aeromedical operations: LWOOD78,JONE82]

'I.

*4*i.
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1) The maximum crew duty day, which begins when
the crew begins preflight planning two hours
before their first flight and ends when the
last segment is completed, is sixteen hours.

2) The maximum number of stops on a route is eight
.' for 14-hour and five for 16-hour crew duty day,

less one stop if bad weather is encountered.

3) The maximum aircraft range is 2100 nautical
miles, subject to restrictions on required
reserve fuel at the destination and winds.

4) The maximum speed of the aircraft is 500 knots;
actual elapsed time between two airfields also
includes departure, arrival, climbs, descents
and other maneuvering at less than maximum
speec so effective speed is considerably less.

V 5) The current standards for fueling, ground ser-
vicing, and patient handling are 50 minutes
when refueling is required, and 20 minutes when

, not required.

6) Under routine service rules, patients must be

picked up within 72 hours of movement vali-
dation, and delivered within 72 hours after
pickup. Priority service reduces both limits
to 24 hours. Urgent cases require immediate
dispatching or rerouting of an aircraft.

7) Although not a strict rule, patients should not

have to make more than two overnight stops.

There is no stated maximum individual patient
time on-board an aircraft, but it should be
minimized. Priority, urgent and special routine
cases may require direct service.

8) Maintenance contracts specify that six aircraft
* per day are available for missions, one for

local training on standby for urgent require-
ments, one to replace any of the six that
develop problems, and three in scheduled main-
tenance.

Many of these restrictions are based on human capa-

cities and limitations. Man is biologically designed to

travel at four miles per hour, not four hundred. Flying

9V disturbs the biological (circadian) rythmn of patients and

0
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crews, which necessitates iimits on the length of flights

or sequences of rlights and on the interval between flights

required for recovery. Flying is innerently fatiguing,

both physioiogically and mentally. Cabin air is dehydrated
to a typical humidity level of 1-2 per cent, causing the

boav to lose fluids. Crew members spend considerable time

at cabin altitudes several thousand feet higher than that

they are accustomed to on the ground.

Several policies have been imposed to insure that

patients are moved with minimum disturbance. This appar-

entIv accounts for the desire to minimize the number of en-

route and overnight stops. Reducing stress on both

- patients and crews is also emphasized. Stress has several

environmental sources. Aircraft malfunctions can cause

problems that range from the merely annoying to critical

and even life-threatening. Flight crews must contend with

such environmental hazards as airfield limitations (runway

length, aids to navigation, etc.), terrain, adverse

weather, restrictions to visibility, and other aircraft, as

Well as in-flight patient emergencies, routing changes and

other exigencies requiring immediate attention and action.

Aircraft operations are limited by the skill and exper-

.ience of the crews that fly them. To minimize skill

dl: iferences and ensure that desired levels of performance

C•; "'. oe met in both peacetime and wartime, standardized

training, evaluation, and recurring accomplishment programs
.5•
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are followed. In fact, the number of crew members to be

trained is the principal determinant of the annual program.

In that sense, at least from a budget standpoint, patient

service is a by-product of the training program. Because

program size has not changed in five years, we presume that

indicates it is sufficient for training purposes, and is

therefore not a significant limitation. In terms of

patient service, increased demand suggests otherwise, but

no major increases have been obtained. Other human factors

limit aircraft operations, including morale (e.g., not

1, scheduling crews for extended periods away from home), and

creating daytime schedules to avoid more hazardous night

operations to the maximum extent possible.

Unlike trucks or buses, aircraft are not constrained to

a fixed road grid. As a result, planning aircraft routes

in three-dimensional space is much more difficult. Each

flight segment consists of departure, enroute and arrival

phases. Each phase in turn involves a number of possi-

bilities. Departures can be by optional or mandatcry FAA

or Air Force published departures, or by pilot-requested

routings. Enroute segments may be direct (great circle)

courses, via the FAA airway structure, or a combination of

these. Arrivals can be published Standard Terminal Arrival

Routes, FAA-directed, or pilot-requested routings. In some

91 instances, particularly between major airports, entire

91 routes may be dictated by the FAA.

N0
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:o further complicate the difficult combinatorial route

o-anning problem, optimum route selection further unfolds

into problems involving aircraft performance, weather

conditions, the status of navigation and communications

aids, and airfield characteristics. Aircraft performance

Ls a function primarily of climatic conditions, operating

rechnique, and aircraft characteristics. Although two of

--nese input factors cannot be controlled, performance can

be determined, in that engineers have created both manual

and automated models of airplane behavior. Operating tech-

0 nique refers to the selection of airpseeds, climb and

descent profiles, and engine power settings. The most

important aircraft characteristics for flight planning pur-

poses are weight (that varies with the number of people and

amount of fuel carried), and aircraft performance.

Climatic conditions are particularly significant in

route selection. Adverse conditions (storms, turbulence

and icing) can restrict or preclude operations into and out

of airports and through enroute areas. Temperature and

armospheric pressure affect engine performance. Winds

alter aircraft speed over the ground. For safety and

patient considerations, if the weather at three stops is

below a soecified visibility minimum, the maximum number of

stops on a route is reduced from eight to seven. (WOOD791

SI
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Airfield characteristics include operating policies,

hazards and restrictions to flight and ground operations,

fuel availability, navigation and communication facilities

status, and other factors that can inhibit or prohibit air-

field use by the wing's aircraft. The C-9A requires a min-

imum runway length, depending upon aircraft takeoff or lan-

ding weight, weather conditions, etc., a minimum runway

load bearing capacity, and taxiways and parking areas with

V sufficient capacity and clearance for maneuvering. There

are currently some 13 DOD treatment facilities in the US

the system serves that lack airfields meeting minimum stan-

dards for safe operations. [DEPA83] Other airfields only

V allow operations during daylight, or when weather condi-

tions permit. (The C-9A can operate in very austere air-

port environments, because it requires no ground support).

Despite the existence of abundant data on environmental

factors that matter, perhaps the most significant reality

is the lack of an adequate environmental information system

to capture and manipulate it. Although automated systems

(providing current weather conditions and forecasts; navi-

gation, communication, and airfield status notices; and

aircraft performance data) do exist, (1) they are not inte-

(grated, and (2), planners do not have direct access to

them. Instead, planners and crews rely on manual methods

to plan and operate missions. This shortcoming cannot eas-

ily be remedied within the organization.

01 t"kll19
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2.2.5 Resources and Components. Resources are the means

through which the system attains its goals, objectives and

ideals. [CHUR69] Resources are within the system in the

sense that they can be controlled; they can be consumed,

changed, conserved, and most importantly, used to the sys-

tem's advantage, at the discretion of system decision

makers. One principal task of a planning system is to find

ways to reduce resource use without degrading client ser-

vice or to improve service without consuming more

resources.

Figure 2.7 attempts to capture the rather convoluted

and disaggregated DOD organizational structure to which

aeromedical resources are allocated. The aeromedical sys-

tem uses five major types of tangible resources: people

*. (flight and medical crews, management, maintenance, and

support personnel); aeromedical staging facilities; air-

craft; physical plant; and budget. In addition, the organ-

ization has certain intangible resources at its disposal,

* including information and knowledge gained from over forty

years of experience. The purpose here is not to produce a

concise inventory of every asset, but to indicate the

*- ownership, roles and importance of each type.

At the top of the structure, the Assistant Secretary of

Defense for Health Affairs is prLncipally responsible for

planning and policy, which we will discuss in the next
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Figure 2.7. Aeromedical Organizations.

section. This level has overall authority and respon-

sibility for resource use, and for presenting annual

resource needs to Congress through the budget process. DOD

guidance constrains and directs aeromedical resource use

through the policies DOD issues. Not shown are other fed-
,-4

eral agencies (e.g., the Veterans Administration and the US

Public Health Service) whose policies directly affect aero-

medical transportation and which both consume and reimburse

.. DOD for aeromedical services used.

.-
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The next two levels in the hierarchy provide the over-

all management and direction of the separate services' med-
S.,

ical programs. At this level, policy and guidance become

rules and regulations on resource use, and the resource

allocations are made from Congressional authorizations and

appropriations.

The first point where any semblance of integration

takes place is at ASMRO. As the exclusive patient movement

regulator, ASMRO has a significant impact on patient ser-

vice. ASMRO manages one resource, the patient movement

-° request data base, capturing and passing data to the 57th

- Squadron, which controls the actual transfer process.

ASMRO has a staff of 15, a small building at Scott, the

computer-based patient data system, and little else beyond

office equipment for its critical role. ASMRO operating

costs are not reflected in the aeromedical budget.

The remainder of the organizational entities involved

in aeromedical transportation fall into two groups. Within

DOD, -he Airlift Command is responsible for virtually all

a.r transportation, including aeromedical evacuation.

Seven members of the MAC Surgeon General's staff are

resputLsible for oversight of the aeromedical function,

budget formulation and submission, and the formulation of

plans and operating rules. 23rd Air Force is a new middle

echelon command and administrative entity to which the

0
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375th Wing was recently assigned. No one at 23rd Air Force

is assigned exclusively to aeromedical operations.

4 The 375th Wing is the principal operational organi-

'- zation, and comes close to being a component by Churchman's

definition. [CHUR69] Under the DOD major force program con-

cept, wings are the smallest units with complete mission

capability and responsibility. Three groups within the

wing, Operations, Aeromedical Services, and Maintenance,

totaling 297 people, are responsible for flight scheduling

and operations, patient service, and aircraft upkeep

respectively. The wing currently assigns 26 officers, 26

enlisted members, and 26 civilians to the first two groups.

The Maintenance function, which has 6 officers, 154

enlisted airmen, and 59 civilians assigned, also furnishes

23 flight mechanics to pr?,ide one mechanic per mission for

enroute aircraft servicing and minor repairs.

Because the wing manages six distinctly different

missions (another is an executive jet transportation

service for senior military officers, DOD civilian

employees, and occasionally, Members of Congress), these

numbers reflect those dedicated primarily to the aeromed-

ical transportation program. The numbers also include a

pro rata apportionment of people employed in other func--

tions at Scott Air Force Base, such as civil engineering,

medical services, that support all six mission areas.



The two squadrons are assigned medical and pilot crews

(2 nurses and 3 medical technicians in each of 23 medical

and 23 2-person pilot crews) for aeromedical operations, in

a ratio of 2.0 medical pilot crews per airplane owned

(excluding 6 assigned overseas and two temporarily assigned

to VIP transportation). In addition, 3616 Air National

Guard and Air Force Reserve personnel provide an additional

598 medical and 18 pilot crews; and 31 liason, 10 evacu-

ation control center, and 15 mobile staging facility teams

for command and control functions, patient handling at

ground stops, and administrative tasks respectively. They

are primarily for wartime system expansion, consituting 92

per cent of all flight medical crews, for example, but they

rehearse their roles in normal peacetime operations and

training exercises. Because reserve forces are assigned to

a major defense program different from their active duty

counterparts, the Air Force Reserve reimburses the aeromed--

ical program for their training. This means that the cost

of reserve pilot crews flying patient service missions are

not reflected as an aeromedical program expense.

Of 83 Air Force hospitals and clinics in the US, five

nave staging facilities for enroute patient care. We con-

sider the staging facilities to be components, since one of

the measures of performance, the number of overnight

patient delays, is directly related to their functioning,

which we describe later in more detail. The largest, at

1CC N?. .
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Travis Air Force Base, employs 61, 10 officers (primarily

nurses), 46 enliKted medical technicians and admini-

strators, and 5 civilians. All five employ a total of 140.

Administratively, they are assigned to the local hospital,

only two of which belong to MAC. Although exclusively

dedicated to aeromedical service, the costs of the staging

facilities are paid by their parent hospitals and not out

of the aeromedical program budget. In Fiscal Year 1977 the

estimated cost was $3,070,000. [DEPA78b]

Detachments are small units of the 57th Squadron

* located at each staging facility, at Buckley Air National

Guard Base, and at McGuire Air Force Base, NJ (where

patients embark for overseas destinations). Five officers

and 35 enlisted personnel provide administrative, liason,

and patient manifesting and baggage handling support.

As a general comment, it should be clear that the

organizational alignments of the people involved in aero--

medical transportation greatly muddle the question ot who

does what. One of the consequences is a substantial under-

statement of the true costs of the system, particularly

* opportunity costs. The US Congress has made repeated

attempts to remedy this situation by consolidating health

care into a single agency, as it did in 1947 to form DOD

itself from the separate service branches, and has done to

create the Defense Logistics and Communications Agencies.

However, repeated attempts to form a single defense

de0l
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9health organization have all failed, including the latest

attempL b ° the 3StLl Congress. [HARR841

The six aeromedical staging facilities (Figure 2.8)

accomodate patients during overnight stays while enroute.

Staging facilities have the following characteristics:

1) They are minimum care facilities; i.e., they do
not provide treatment.

2) They are located at points that function as
origins and destinations for patient movements,
intra- and interregional transfer points, and
overnight stopovers for crews and aircraft.

3) Two (at Travis and Andrews Air Force Bases)
0 receive patients from the international system.

4) Geometrically, they the central places in a
Dirichlet regionalization of the 48 US states

5) Capacities shown are total beds available,
unrestricted by patient category or condition.

6) Wartime reserve mobilization would expand the
capacity of these facilities and activate four
more facilities at other Airlift Command bases.

The first point is self-explanatory. Bases with

staging facilities serve more patient origins and destina-

' tions than any others. 2069 patients, 28.26 per cent of

the 7321 transferred during the period we studied, orig-

inated at one of the six bases, and 4407, 60.2 per cent of

all patients moved, were destined for hospitals served by

these bases. As major patient sources and sinks, they are

* central places in the flow network. All patients coming

from outside the US and from the Carribean entered the

domestic system at Travis or Andrews Air Force Bases.

X -A
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Figure 2.8 shows the regional assignments of the 48

states. The dar< lines are perpendicular bisectors between

adjacent ASF pairs. 36 states are assigned to the geo-

graphically closest ASF. Six were subdivided by these geo-

metric boundaries and were assigned as shown. Six are

assigned to more distant facilities. This might be part-

ially explained by the transfer several years ago of the

region 2 ASF from Montgomery, AL, to Biloxi, MS. With

Montgomery as the ASF, Louisiana, Tennessee, and South

Carolina would have been "properly" assigned, leaving only

three not assigned to their closest centers. No one in the

organization could find any historical reFerence for the

. original assignments. DOD uses a nine-region system to

group military medical facilities, but that alignment does

not appear to have any substantive aeromedical purpose.

:n i982, the average number of beds occupied at each

f.,acil ty was 18.0 at Kelly AFB, 48. at Scott AFB, 26.5 at

J, Andrews AFB, 18.6 at Travis AFB, 16.4 at -Keesler AFB, and

0.3 at Buckley ANGB. The average length of stay at each

ASF was 2.11, 1.28, .64, .94, 1.34, and .9 days respec-

Z, rivelV. In 1982, on some weekdays, the ASFs were full.

"DEPA83] As we mentioned in our discussion of system pur-

,-)poses, both the capacity problem and the desire not to

•mpo;e overni it delays on patients have lead to management

initiatives to reduce ASF use.

I.
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The eleven C-9A domestic system aircraft provide the

means to transport patients quickly up to 2000 nautical

miles non-stop. They were permanently modified at the time

of purchase with special oxygen, electrical, vacuum and

other medical systems and equipment, boarding ramps, seats

for oatients in full orthopedic body casts, and accomo-

dations for litters (stretchers). Each aircraft can carry

any combination of 40 ambulatory and litter patients.

While no major modifications (e.g., improved engines and

electronic fuel management equipment) to increase operating

efficiency have been made, medical equipment is continually

upgraded. On-board communications equipment permits

continuous in-flight coordination with ground facilities,

and dynamic rerouting as conditions change.

All routine aircraft maintenance service, including

parts and supplies, are provided by a civilian contractor

at the home station at Scott Air Force Base, IL. In

addition to the aircraft, the wing keeps specialized tools

and ground support equipment at the central base. Wide-

spread commercial DC-9 use and the proximity of Scott to

Lambert-St. Louis International Airport where the DC--9

manufacturer is headquartered and a major air carrier main-
0

tains a DC-9 fleet make large spare parts stocks unnec-

essaly. Because of small fleet size, new pilots are init-

ially trained by commercial contractors, who also provide

flight simulator facilities for recurring training.

4
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Under the terms of the maintendnce contract, the wing

has six to seven aircraft availaole for daily missions, one

for both training and emergency flights, three undergoing

minor maintenance (with one available to replace any of the

mission aircraft in the event of unscheduled maintenance

problems), and one aircraft undergoing major maintenance

(lasting 45 days) at another contractor's facility.

Mission aircraft represent the means to fly approximately

42 to 48 route segments each day, seven days a week. Fewer

than six missions are flown on weekends, patient movement

. demand permitting, but not more than seven even when demand

increases. Besides providing patient transportation,

missions provide regular and frequent flying experience to

maintain both active duty and reserve crew currency.

The physical plant is relatively modest, because the

wing does not maintain permanent facilities away from the

central base, except for the six detachments. The ASF's

are maintained by the medical facilities at which the ASF's

are located. At Scott AFB, the wing maintains all base

facilities, although most are used for other purposes. A

headquarters building, two squadron buildings, one aircraft

hangar, and flightline facilities for C-9 maintenance and

aircrew training are the extent of its physical plant. The

costs of acquiring and maintaining these assets are

accounted for, and a proportionate share of other base

operating costs not directly part of aeromedical

)
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transportation operations are accounted for as non-direct

operating costs.

Each year, as we noted in the last section, the wing

A.. receives a certain budget authorization and appropriation

as part of the annual DOD budgeting process to pay for the

various resources we have just described. Through the

Programming-Planning-Budgeting System (PPBS), the wing

requests and receives a budget (more correctly, authority

to obligate the US Treasury to pay amounts up to that

share) to fund aeromedical operations. There are several

* significant features of the budget that should be noted.

The US Congress and the Department of Defense use two

distinctly different formats. The DOD PPBS format is

o-ganized into ten major defense missions, including aero-

medical transportation. Congress utilizes the traditional

line-item format, with categories for personnel, military

.% construction, operations and maintenance, without spec--

ifying how they are to be used in mission terms. Costs can

be determined by referring to either format, although each

offers better and worse features than the other.

Each year the budget process maps resource requests

into the program budget format, then into line items for

Cong!:essional authorization and appropriation, and then

back into the ten programs. As part of that last process,

* the wing's obligational authority for various kinds of

A5y -r
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resources is pooled into the maximum number of flying

hours21  the wing can fly to accomplish its mission.

Programmed total direct operating costs for 25806 flying

hours in the 1985 fiscal year budget are as follows:

Cost Category (in $1,000s) Fixed Variable Total

Aircraft operations

Depot Maintenance $13295
Supplies and equipment 880
Engineering services 1048
Jet fuell $24516
Crew Per Diem 1001

$15359 $25517

Aircraft operations subtotal $40876

Personnel

Civilian pay $2563
Foreign workers 162

$2725

Personnel subtotal $2725

Administration

Office expenses $16
Travel (non-crew related) 651
Utilities 577
Communications 77
Real property maintenance 221
Base operating costs 668

$2210
0

Administration subtotal $2210

Total Operating Cost (excluding pay) $45811
Less reimbursements for non-

medical passengers carried and
* for reserve and guard salaries -1672

Total Direct Operating Costs $44139

NOTE: 1. Jet fuel is charged at one standard price at all

Air Force installations in the continental United States.21

Source: Headquarters MAC/SGM, 19 April 84.

0
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Each flying hour, then, "costs" about $1700; in fact,

that amount plus the direct expenses of military pay and

allowances is the charge to any authorized users who must

reimburse the wing. It is interesting to note that these

costs do not include other charges for aeromedical care

costs ($105), factored amounts to recover military pay and

allowances ($770), other personnel costs ($120), and mili-

tary moving costs ($50); which add an additional $1045 to

the charges made to other non-DOD, federal users. To other

users not eligible for US government rates, the additional

costs of retirement entitlements ($214), administrative

expenses ($23), and a 4% asset use charge (in lieu of air-

craft depreciation) ($115) are added, for a total of nearly

$3100, plus any charges for special requirements or other

abnormal costs. [DEPA84,p.84] (ASF costs are not included.)

There are a number of salient observations that we

should make regarding system resource and component costs,

1) Actual costs are considerably understated. Fac-
tor costs are not all accounted for, even in

* the non-government charge. Notably absent are
the costs of personnel assigned to 23rd Air
Force, MAC, ASMRO, and the two DOD levels. The

*- Air Force Reserve provides reserve salaries,
and the parent hospitals pay their staging
facilities' operating costs.

2) DOD uniform fuel pricing discourages economic

operation. The policy to carry full fuel loads
*_ maximizes flexibility but hinders conservation,

as does the lack of flight planning automation
and on-board fuel management equipment. The
airlines, for whom fuel is the largest variable
operating cost, track fuel use closely, by

* plane and even by pilots, to detect patterns of
*. uneconomical practices.

4
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3) Both the referring hospital and the patient
have strong incentives to choose air trans-
portation to another facility over local
civilian treatment. Referring hospitals must
pay for the full cost of local treatment out of
limited budgets, and all but active duty
patients must pay for some portion of it. The
air transportation system and the destination
military hospital absorb all costs, making
transfers essentially free to referror and
patient. Comparing costs is difficult, because
of understated flight costs, the flight cost
allocation problem, and the lack of accurate
care cost data at DOD hospitals. [FRAG821

4) There is a strong incentive to maintain slack
to absorb the unanticipated.

5) The principal control device emphasizes inputs,
not outputs.

6) The rationale behind allocating resources to
servers rather than users is to produce
training outcomes; user service is a fortuitous
by-product. The allocation mechanism has no
pricing cues; no competitive alternatives are
available or permitted to provide market
prices, and no internal transfer pricing via
working capital funding is used. Performance

*measures relate resource inputs to service out-
puts, expressed in highly aggregated, service-
oriented terms, e.g., numbers of patients
moved, not training outputs.

Though difficult to quantify, the aeromedical organ-

. ization also has significant intangible resources. In

their 40 years of moving large numbers of patients, their

* accumulated experience and knowledge undoubtedly enhances

service quality and system capability. The data they have

collected provides an historic record of resource use and

* patient service, though it is not currently used to best

advantage to improve resource allocation and utilization.

Finally, one has to be impressed by the spirit, enthusiasm

and dedication of the people who are convinced that they

ought to be doing what they are.

I
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2.2.6 Planners. One of the most fundamental questions in

designing planning systems is, Who should be the planners?

One approach would be to use the mapping approach we

employed earlier for clients to answer the related question

of who they currently are. By identifying current planners

4. and their qualifications, and determining how and by what

right or authority they perform their planning functions,

we should gain some insights into who they ought to be. As

seems a familiar pattern, however, that determination ulti-

mately requires choice, which unfolds into answering other

difficult questions of how we measure or judge the compe-

tence of planners, their performance, when and what

recourse or compensation would be appropriate should their

plans fail, and the efficacy of the approaches and methods

they employ. Apparently no one has proposed any defensible

criteria for making such judgements. [CHUR791

For that reason it seemed most reasonable to restrict

our attention to planners and planning decisions directly

involved in patient treatment, perhaps the most significant

of the transportation system's purposes. The ability to

care for patients is function of the three major treatment

planning variables: capability (which services will be

provided), capacity (to how many), and entitlement (who is

eliaible to be served). Transportation needs are directly

related to imbalances in the distribution of capability and

capacity among facilities and to limitations imposed by

2'
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entitlement rules. We might have simply assumed these

conditions to be dictated by an environment in which scarce

resources and other unalterable factors create these

conditions. But, in examining the roles of the the plan-

ning gioups listeu In oui map in Table 2.t we found that to

a significant extent these conditions resulted directly

from planning failures caused by participants in the aero-

medical transportation planning process.

Congress legislates health care entitlements, presum-

aoly by considering the need to maintain the health of
-.. hose providing the nation's defense and to provide an ade-

quate health benefit as compensation for that service. The

entitlement rules create three classes of patient service:

1) Active duty soldiers receive all in-patient and
out-patient care without cost.

2) Active duty dependents receive unlimited in-
patient services under CHAMPUS at civilian hos-
pitals, or on a space available basis at military
facilities, for a nominal daily charge. Out-
patient care is free at military clinics;
dependents repay CHAMPUS for a deductible and a
co-insurance portion of charges at non-military

* clinics. (In 1979, the three charges were $4.65
per day, $50 per person and $100 per family,
and 20 per cent of actual costs, with no upper
limit). [DRMS79]

- 3) Retirees and their dependents have no guarantee
* of service at a military facility even if there

is space available for them, and they must pay
the nominal daily charge for in-patient care.

%Under CHAMPUS, they must pay the deductible for
out-patient care, and 25 per cent off both in-
patient and out-patient charges. And, at age

0 65 they become ineligible for both CHAMPUS and
Medicare.

"
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TABLE 2.6

DOD AEROMEDICAL TRANSPORTATION PLANNING MAP "

Phase Agency Inputs Constraints Output

Legislation Congress DOD Budget Political Defense
Requests Economic Missions

Societal Entitlement
Rules

Budget

Policy DOD Budget Entitlement DOD Policy
Formulation Defense Rules DOD Health

Missions Missions
Budget Shares

Policy DOD DOD Health Fiscal DOD Health
Enacument Health Missions Legal Policies

Council DOD Policy Service
Guidance Criteria

* Regulation

Policy
Regional

Boundaries

Program Services Budget DOD Health Service Health
Formulation Shares Policies Programs

Facility
budgets

Operating
Rules

Program Hospital Health Operating Treatment
Execution Programs Rules Programs

Budget

Regulation ASMRO Movement Regulation Mission

Requests Policy Parameters:
* Regional Origins

Boundaries Destinations
Facility Categories

Needs and Special
Capacity Needs

* Movement 375th Mission Service Movement
Wing Parameters Criteria Schedule

Resources Patient
Needs

Operating
Environment
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its examination of the DOD heaLth services system, the

Defense Resource Management study concluded that

At one time the military services were generally
considered to offer the best medical benefit avail-
able. In recent years, though, military personnel,

-tir--, ard dcpedttts a-pedr Lo be iiiireasingiy
dissatisfied with their health care benefit.
Unavailability of services, long queues, attitudes
of providers, administrative mixups, and excessive
costs of CHAMPUS, are the most strident and most
frequently heard complaints. ... While the CHAMPUS
program reimburses those who are denied in-house
-c----e for much of the cost of civilian care, the
CHAMPUS program can be distinctly inferior to in-
house care in financial protection, covered ser-
vices, convenience, continuity, and quality of
care. [DRMS79,p.94]

More significantly, the study concluded that

The bifurcation of the health care system into
CHAMPUS and direct care allows patients to switch
or be switched from one branch of the system to the
other, potentially resulting in harmful or demor-
alizing discontinuities of care. Current regu-
lations prohibit military physicians from making
direct referrals. Hence, if a local military
clinic or hospital lacks the necessary services to
treat a beneficiary's illness, the military phys-
ician must either refer the patient to a military
hospital that offers the required service (even if
the hospital is far away from the patient's home),
allow the patient to find his own care in the local
community without referral advice, or attempt to
persuade his or her commanding officer to have the
clinic or hospital pay for the civilian referral.
In the latter case, there is little advantage to
the commanding officer to pay for the care out of
his or her own funds when CHAMPUS will pay. In the
other cases, the patient suffers. The patient
either must be uprooted from home for treatment or
must find the right phsician or hospital, perhaps
in an unfamiliar locale to which the patient hap-
pens to be assigned. If the patient chooses to
seek local care, the patient may never be referred
back to his or her primary military physician, fur-
ther inhibiting continuity. [DRMS79,p.1061
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As another direct result, many beneficiaries receive no

care. [DRMS79] However unintentional, current entitlement
I

planning has created several very negative treatment condi-

tions, including uprooting patients from their homes and
n g~e tc .. . . t:,- faciLitiLe., forcing "hem Lo choose

transportation as the lesser among many evils that include

no treatment at all, and saddling them and the taxpayer

with unnecessary travel costs. These circumstances present

the transportation planner with substanti l]y more diffi-

cult problems than simply resolving supply-demand medical

service imbalances.

These problems wou±d be mitigated, in all or at least

- . partly, by adequate capability and capacity planning. But,

there is substantial evidence of significant shortcomings

here also. Defense planning includes allocating medical

resources between the two major health missions and

distributing resources in sufficient quantities and to

appropriate locations that meet both peacetime ano. wartime

planning demands, which as we discussed earlier inherently

. conflict with each other. As studies of defense planning

and budgeting by Crecine [CREC71] and Wildavsky [WILD75]

have concluded, however, even under the appearance of

rationality afforded by PPBS, the process is mcre one of

reacting to the political and economic environment,

A "muddling through" [LIND59I rather than comprehensively

evaluating and selecting the best planning alternatives.

~nx
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Several soecific deficiencies in capacity and capa-

-• bility planning have been identified that are related to

the organizational and institutional factors we described

earlier. At the DOD level, responsibility for the two

principal health missions must be assigned to the services.

DOD clearly and unambiguously assigns readiness objectives,

missions, and planning responsibilities to the service Med-

ical Departments through its directives and regulations.

But as the Defense Resource Managment Study found, "Nowhere

in service regulations was the DRMS able to find explicit

assignment of the benefit mission to health care managers."

- LDRMS79] As a direct result,

The absene-e of an explicit health benefit mission
leads to an unnecessariiy convoluted logic train in

the justification of resources needed to accomplish
the health benefit mission. [DRMS79,p.821

in addition to creating problems in providing adeq- 'te

resources for health benefit treatment, this situation

., induces bias toward the readiness mission in allocating,

distributing, and using medical resources:

Health care tends to be viewed by the managers of
the system not as a guaranteed benefit at some
specified level but as a serendipitous by-product
of a health care establishment that exists to main-
tain the health of the active duty force and to
provide wartime support. rDRMS79,p.94]

Other studies have noted contributing problems. An

OMB/DOD/HEW Study in 1975 concluded that "the M(ilitaryl

H[ealth] Services] Slystemj is handicapped by lack of

------S
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adequate population, workload, and cost data and comparable

information systems for the Military Departments."

DRMS79,p.lI21 Developing a unified, standard cost

accounting system could greatly improve che collection of

actual direct care costs necessary for comparative analyses

of direct and civilian treatments, but the prototype is

still incomplete. [FRAG82] Efforts to determine the

population-at-risk, actual numbers of eligible benefic-

iaries, the service cacnement areas of military facilities,

and actual and forecasted workloads of all MHSS facilities

are underway, but not yet completed. [DOYL82,STCL82] Until
0

these problems are resolved, adequate capability and capa-

city planning is impossible.

Decentralized and separatp medical services are a long-

standing DOD tradition. They also seem to be major

contributors to the situation where only a small fraction

of all patients (fewer than 22 per cent, on average, in

calendar years 1981, 1982, and 1983 [HARR84]) are moved to

the facilities of another service. With the possible

S exception of flight and submarine-related clinical speci-

alties, health care is one of the most uniform of all

missions across the services. However, with the emphasis

* placed on maintaining the integrity of medical units fcr

deployment purposes, attempts to consolidate DOD health

care have all failed, at some unknown cost in under-

* utilizing available capabilities and capacities.

%X-e% 
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Another instance of lost utilization opportunities

cccurs in transfer regulation, because of the traditional

practice of not allowing regulators to intervene in the

determination of patient destinations. Siverd [SIVE78]

predicted in his study of regulation policy and its impact

on patient service that considerable improvement in patient

transfers could ne realized if the regulation process were

interactive among the facilities, doctors and ASMRO. in

the next section, we will illustrate how changing the plan-

oning criteria for destination selection during the regu-

* oiation process might improve transportation service.

For sake of discussion, Table 2.7 groups the various

loanning agencies according to our understanding of their

principal planning concerns and roles, and relates them

C." through a continuum based on client welfare. Roles are not

-' exclusive and disconnected; rather, the overlapping and

conflicting concerns of serving all versus serving each

individual patient must be balanced, particularly by plan-

ners In the middle group.

This scheme also introduces the patient as planner, a

role that may seem somewhat curious, and is often ignored,

5 since most system participants presume that the "expert" in

patient -reatment is the doctor. But, his world view is
.. P

that of the any specialist; the patient is ill, so he must

% be treated. In seeing that the patient receives the best

S
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TABLE 2.7

COLLECTIVE VERSUS INDIVIDUAL PATIENT PLANNING CONCERNS

Health Program Movement Treatment
Planners Planners Planners

Congress AL. ,O Hospitals
DOD 375th Wing Doctors
DOD Health Council Patients
Surgeons General of

the 3 services

All Individual
Patients Patients

V. and most appropriate treatment, the doctor fully discharges

his planning:1 Aities.

However, to patients, treatment is only one of many

" personal concerns.

Health care utilization patterns of individuals
have been demonstrated to be the result of a
combination of compex factors which include socio-
demographic characteristics, expected benefits from
seeking care, the availability of sources of care,
and the economic and social costs of seeking care.
[ ...] the decision of where to seek health care is
as complicated as the decision of whether to seek
health care and some of the same factors may be
relevant. [STCL82,p.3]

Individual patients would seem the most appropriate

"experts" to determine their own treatment objectives and

constraints. That would include balancing the costs and

other aspects of CHAMPUS care against delays, disruptions

and inconveniences caused by the aeromedical system, to

travel to distant facilities when they cannot be provided

direct care at military hospitals. An informal 375th Wing

survey found that predicted aeromedical transfer time

0%°
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strongly influenced patient choice of treatment plans.

iPOFF84]. These individual planning decisions strongly

affect other planners, particularly those in Table 2.6 who

incorporate oacient needs into their planning.

NI

In summary, DOD aeromedical transportation planners

must resolve planning problems that to a significant extent

stem from the lack or failure of other medical planning

processes. Congressional entitlement planning forces some

patients into the aeromedical system because it creates

either inferior or no alternatives, not because trans-
S

oortation is the best alternative to the patient. The

.ea-th benefit mission is not assigned within the services,

whose attitudes and resource allocations are biased toward

one mission (readiness) and one beneficiary class. Through

its separate service medical organization, DOD tacitly per-

mits practices that emphasIze the service's and not the

client's interests, by restricting or directing patient

transfers along organizational lines. By not permitting

ASMRO more direct role in transfer planning, patients may

e subjected to unnecessary travel, and opportunities to

improve service can be lost. Capacity and capability plan-

ning suffer from the lack of adequate cost, population-at-
0

..isk, workload, and resource utilization data, resulting in

resource allocations that produce service shortages that

the transportation system must resolve. ClearLy, the plan-S

fning function ought to be better than it is.

S.V'
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2.2.7 Decision Makers. The transition from a discussion of

[* planners to decision makers is aided by a natural rela-

tionship that exists between planners and decision makers:

if plans are implemented, the planner in effect is a deci-

sion maker. In fact, if we use a mapping approach as we

did for planners, we will find that to a great extent the

two maps are coextensive. Decision making and planning

collide when Lhe time comes for plans to be implemented.

I In our definition of the decision maker, we said that

it was he or they who ought to coproduce action (with the

environment, whose elements are beyond the decision maker's

control) through the use of appropriate resources. The

decision subsystem takes action by (1) setting the actual

levels of planning variables, (2) carrying out the plan at

the levels chosen, and then (3) controlling the resulting

outcome, monitoring results, comparing them with those

desired, adjusting the allocation of resources, and gener-

ating new actions, by either suggesting or making changes

to plans in the process.

4'.
To better understand the identities and roles of aero-

medical transportation decision makers, we constructed the

0 "decision map" in Table 2.8, Listing all those who influ-

A ence the system's outcomes. The list's order follows that

sugyested by the diagram of the major organizational

* participants (Figure 2.7).
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TABLE 2.8

AEROMEDICAL TRANSPORTATION DECISION MAP

Decision Maker Variables Decisions

Congress Economic, social, Defense budget
and political Entitlements and
conditions benefits

DOD Budget levels Mission assignments
Defense policies Budget allocations

Services Mission assignments Budget distributions
Budget allocations Health programs

ASMRO Facility capacities Patient destination
and specialities Movement validation

Training program
requirements

Patient diagnoses

4 MAC DOD transportation Operating policies
policies and rules and plans

Aeromedical budget Qualifications
Readiness goals Flying hour allocation

4ing Flying hour budget Operating rules
Resources available System scheduleMovement demands Alterations to daily

routing schedules

Evacuation Patient condition Enroute care
Control System schedule Service stipulations
Center

Operations Operating rules Daily routes
Environmental Command and control

conditions Dynamic rescheduling

Medical Mission Treatment programs
Facilities Budget Training loads

Health programs Aeromedicai movement
or local treatment

S Doctors Patient condition Diagnosis
Treatment policies Treatment alternatives

:. Patients Availability and Treatment alternative
accesibility of
care alternatives

Perceived benefits
and costs of care



-134

In improving a system one of the most imprtant tasks is

to design functional subsystems, or components, that have

the resources and management to carry out one or more com-

%plete missions of the whole system. (While this seems to

contradict the notion of whole system design, the reality

is that we, as designers, cannot adequately create sincle

components to perform all missions of complex systems.)

Mission components should be designed so that their perfor-

mance is directly related to the performance of the whole

system. Component performance should reveal how the compo-

nent operates and if it is operating properiy, including

its decision making and informational mechanisms.

One of the most common and most serio.,, consequences of

breaking down a whole system into parts or subsystems is

that the principal concern is problem-solving. The

rationale often attributed to an organization's structure

is that it represents the organization's view of which pro-

blems it considers important (and which are not), an allo-

cation of resources to solve the problem, and task assign-

ments and responsibilities. But, what is commonly missing

is the assignment cf complete mission responsibility, as we

saw in the case of DOD's health benefit mission. The

resulting uncoordinated array of organizational pieces

addresses only aspects of the health care delivery problem.

This fragmentation makes performance measurement extremely

difficult.

0 w
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Presuming that transportation is one defineable DOD

nealth mission, there are Iwo principal decisions involved

in carying out that mission: deciding where patients go and

how they get there. These decisions are obviously related,

but each is sufficiently complex that it would be exceed-

-ngly difficult for one component to handle both. The

mission of the first component is principally concerned

with utilizing facility capacity and capability, supporting

training programs, and balancing institutional and indi-

vidual patient needs. The second component should be con-

cerned primarily with patient needs. While we can find

v current organizational units that handle portions of these

missions, none is given complete responsibility.

The purposes of having smaller, but interconnected

components is very different from those of isolating pro-

blem areas and improving the efficiencies of individual

units tasked with solving those problems. The essence of

P.. an efficiency approach is the balance sheet, with its lists
of resources available. The basis of any decision is typi-

cally cost, measured in terms of using up available

resources. As Churchman notes, operating efficiency seems

to be an overriding objective of all managers of systems,

namely, finding inefficiencies in the form of high costs

and eliminating them. [CHUR67] But as Mintzberg argues very

persuasively, efficiency approaches have usually failed,

and for a number of consistent reasons. [MINT82]

a®r
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1) Efficiency places great emphasis on
calculation, and calculating costs is usually
much simpler than calculating benefits.
Efficiency naturally tends toward one system of
values (economic) and away from others
(oriented toward social benefit).

2) In a kind of goal displacement, efficiency

measures often become values in themselves,
creating a "cult of efficiency". [PFEF78]

3) Efficiency is accounting transaction-oriented;
if an event hasn't occurred yet, no cost has
been incurred. The approach loses its ability
to forecast future events and becomes almost
completely historically oriented.

4) Its philosophy emphasizes one best way;
inefficiencies (e.g., high cost) are absolute
and must be eliminated; solutions are obvious.

0 Aeromedical decision making is continually critiqued by

perhaps the strongest proponents of efficiency, its aud-

itors. To them, unused ASF beds and urgent missions that

serve one patient are obviously wasteful and can be elimi-

nated to reduce costs. (DEPA78b] The organization argues

otherwise, but with great difficulty, because their

response centers on benefits and costs, and the benefits,

particularly those that accrue to readiness, are very

V. difficult to measure. Service quality, patient satis-

faction, and other qualitative and subjective benefits are

likewise difficult to calculate.

A very different decision making approach provides a

way to respond, and also attempts to avoid some of the very

real dangers posed by the efficiency approach. It is based

I *
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on the idea of a management information system with some

very specific capabilties.

Si) The MIS should view all cost as opportunity
costs, defined as the "best" alternative for-
gone when an action is taken, measured in terms
of costs and benefits. To estimate this cost,
the MIS must contain a conceptual view of the
decision maker's model, both its realities
(what is feasible) and its values (the benefits
involved). [CHUR67]

2) Resources, both in the future and in the past,
must be viewed in terms of alternative ways
they can be used. The principal MIS function
is to make alternative uses explicit and under-
standable to the decision maker.

3) Decisions on resource use have global, not iso-
* lated effects, and must be so evaluated.

Inefficiencies are relative and must be
balanced. Decisions that lead to overall
improvement are often not obvious and non-intu-
itive; some costs may increase, and "illogical"
2hoices, . lonqer routes, may yield greater
improvement.

Perhaps the greatest danger in an efficiency approach

is ignoring benefit concerns. A transactions orientation

measures performance not in terms of the legitimacy or

"mportance of meeting client demands, but on the number of

demands satisfied. The ASMRO function is a case in point.

Nowhere in their measure of performance is client benefit

expressed; annual production is a tabulation of patient

movements regulated. Health managers do not specifically

prevent them from being concerned with the purposes and

quality of patient movements, but neither do they rate them

A? on how they are able to incorporate patient welfare in

their decision-. The main decision rule is based on

-O 11hI
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N

efficiency, and apparently, an economic value: move

patients to the closest facility with adequate capability.

We will illustrate at the end of this section that the

resulting opportunity costs may be very high.

A third design isssue is how to map data into infor-

mation for decision making. Any mapping is based on a

particular world view: which data, how data and information

are related through values, and what kinds of decision

alternatives are sought. The efficiency versus MIS debate

illustrates (1) the danger of incorrect or non-appropriate

I0 world views and (2) that many views are possible, as Mason

pointed out. Differing views promote, rather than elim-

inate, conflict, but for a goud purpose: tne debate they

induce forces us to recognize important concerns overlooked

by a single view. Correctly designed, a decision system

based on debating differing views will avoid the efficency

practice of relegating benefit concerns to "externalities"

and then conveniently forgetting them.

One of the best ways to do this is to create powerful
0

opposites, or dialectics, and embed them in decision sys-

tems. We see some excellent possibilities for this in cur-

rent aeromedical decision making. We observed the needs of

individual patients and the needs of all patients being
.9-'

,',, debated by the medical and flight planners during daily

, planning meetings, although the debate was structured

around two different sets of data, one about the patients

*"5
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and the other on airfields and weather and other things

important to pilots. In destination planning, no one ques-

tioned the view that the nearest destination with capa-

bility is the best decision rule for choosing pa:ient dest-

inaticns; flight planners should be able to debate those

choices on the basis of better routing opportunites. While

doctors certainly have or should have their individual

patient's interests in mind when they select or strongly

influence the choice of destinations, this does not suggest

that their choices should go unchallenged by others, like

* the ASMRO regulators, who may see other opportunites from

their vantage point of observing many cases with similar

diagnoses, or even the patients themselves. Granted, the

current system uses the safety afforded by routine and

p rigidly structured decision making to avoid disastrous

results. But, witout flexibility, the system cannot find

innovative ways to resolve its current problems caused by

increasing demand and fixed or declining resources.

What we have found in the problem-oriented (vs. mission

oriented) approach is the elimination of overlap and impor-

tant linkages. Figure 2.9 illustrates one example of the

consequences of ASMRO choosing the nearest facility with

capabiiity. Each patient origin is shown with two allow-

able destinations, and assuming the points are arrayed in

ne Euclidian plane, one destination is closer to each

destination. Unless an exception applies, ASMRO must

° S
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"A -.'.. ...

03

D4 
D5

........ ON- Flexible destination routing

, Closest-with-capability routing
S', __- Allowable destination

Figure 2.9. Patient regulation decisions.

choose the closer one in each case. Destinations D2, D3,

D4, and D5 would be selected, and the route

I03 --> D4  -_-> 0 2 --> D2  -_-> 0OI--> D3 -_-> 0 4 -_-> 0 5

would result. If alternatives were allowed, the route

03 -- > D I  -> 02 -> D2 -- > 01 -- > 04 -- > D3

F. would both reduce the distance traveled, and more impor-

/:. tantly, the number of stops. The route

. 03 -- > 02 -- > D I -- > 04 -- > 01 -- > D 3

wou.Ld eliminate another critical route segment. But, these

routing efficiencies must be balanced against the oppor-

S-. tunity costs of not sending the patients to the facilities

according to the closest distance rule; reducing distance

may create adverse effects that outweigh the savings, even

though patients seem to benefit.
U- ...
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2.2.8 The System Guarantor. Perhaps the most important

aspect of the planner's reality is (or at least should be)

whether or not his plans will succeed, which is also (or

should be) of great concern to the system's clients. What,

if anything, will guarantee success? The optimality theo-

rem of linear programming guarantees that the best solution

will be found, if one exists, although we have also talked

about how LP solutions depend critically upon the whole

system assumption, that the LP model includes nothing

irrelevant or erroneous and excludes nothing relevant. LP

S. also requires a certain faith that, if tne optimal plan is

pursued, the optimal result will be realized, even though

the pursuit may extend beyond any previous experience.

We can't overlook an ethical dimension to the opti-
mality question; if we can solve for, pursue and even

attain an optimal condition, does that necessarily mean

: [hat we should? Careful reflection on, sdy, an LP naxi-

mizator of heroin sales or profits suggests that we should

not, in some instances. Without trying to be overlyS

dramatic, the point here is that methods such as LP lack

t*e capaoility to either guarantee success judge what is

achieved in terms of client betterment. If we can accept

These assumptions LP requires, than the guarantor problem

is resolved. But since we have good reasons to think that

we cannot, then what provides an acceptable substitute?

SV
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There seem to be two troublesome aspects of the guar-

antor that need to be resolved. The first is that our

planning model be internally consistent, that it not con-

tain or lack elements that will create erroneous plans.

The second is that the global concerns of the model are

correct, that the needs of the clients we seek to serve

ought to be served, and that needs satisfaction is equit-

able amonq all clients. If those needs ought to be served,

then the system ought to survive, which is the most impor-

tant determination that the systems approach can make.

- Some suggest that LP contains a built-in mechanism,

sensitivity analysis, to aid in guaranteeing internal

consistency and correctness by addressing such questions as

what happens when variables are added to and deleted. But

all such methods fail for one fundamental reason: they are

, not able to detect errors in the construction of the model

itself. Indeed, all rational models ultimately require

external judgements, such az, specifying "correct" signif-

icance levels in hypothesis testing or "all" the oppor-

* tunity costs of holding inventories, because the model

results are only valid to the extent that the model is

valid, which can only be judged externally.

On the second concern, LP does find an optimat value Z,
4..

and we can examine its accompanying plan for the collective

and individual benefits it provides. But we have no way of

* meacuring how far any one solution may be from the real
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optimum optimori, or if one is closer than any other, or

even if a series of attempts approximates the real optimum.

Our olans could lead to disastrous results, but we could

not anticipate that outcome, even approximately.

Churchman suggests that

Some other theory of approximation is needed for
all planners, whether or not they employ
mathematical programming. After mucn soul-
searching, I've only been able to find one, namely,
the theory that a "guarantor" exi3ts, which
guarantees that our best efforts, made with every
attempt to be as comprehensive and honest as we
can, will not contain an error so colossal that our
recommendation for action t.?ili lead to disaster,
and that overall there will be a gradual betterment

* of the human condition. [CHUR79,p.98]

in other words, the guarantor is not based upon the mathe-

matical properties of the system model, but upon the plan-

ner's intentions and efforts. The best we can propose for

an aeromedical transportation planning system guarantor,

:ihen, is a theory, that the best insurance against disaster

,s to compel the planner and the decision maker to con-

stantly reexamine and revise their world view, so that they

- do not commit any errors that can be avoided.

Befor? we conclude our discussion of the aeromedical

system, we will attempt to characterize the movement of

patients from nistorical patient movement experience.

Fcliowing that, we will then propose ways to improve the

system based upon our observations in this section and on

V ~ne b,~~cfunctioning of the current system.

SS
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2.3 The DOD Aeromedical Transportation Problem. In the

first sections of this chapter, we discussed why the DOD

Military Health Services System needs to transport patients

between facilities. In the second section, we proposed a

systems approach to developing a planning system for the

aeromedical transportation function. Because plans must be

specified in both spatial and temporal terms, we first need

to understand those characteristics of patient movement.

There are elements common to all forms of movement

phenomena. All forms have a geographical referrent;

0? patient transfers have specific origins and destinations.

Movement is purposeful; at one location the supply of a

-, -" medical service is insufficient to meet demand, while other

locations have unused capacity. The spatial nteraction

between places with supply-demand imbalances can be charac-

terized by a volume of movement (flow) and the expenditure

of time, effort and resources (costs). We commonly refer
S°.

to points as nodes, and differentiate them by function

(origin, destination, transshipment point, storage loca-

tion, etc.). Nodes are linked by routes over which flows

V occur. Both nodes and routes exhibit structures that we

expect to be meshed in an organized way. We call these

structures networks, and we expect them to be organized

hierarchicaily, as we would any compiex system. We should

also be able to observe attempts to economize on time,

" effort and resources expended in routing patterns, since

.
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most creatures, including humans, seem to prefer the

shortest, least expensive, or easiest paths when they

travel.

In the following sections, we wil'. attempt to charac-

-erize patient and aircraft movement in terms of flow and

air route networks. We first describe the patients who

received service during a ninety day period. We then use

both descriptive and explanatory methods to transform

patient flow and aircraft movement data into structural and

temporal network models. From these representations of the

actual system, we will then formulate the model in the

inal section of the chapter hat the remainder of the tne-

sis will address.

2.3.1 Patient Demographics. To determine the nature of

patient movements, we examined 14597 individual patient

movement data records provided by the US Air Force Military

%A. Airlift Command's 375th Aeromedical Airlift Wing, Scott
. *
.. N A.-FB, Illinois, for the ninety-two day period from November

* ., 1978 to January 31, 1979. Each record provides details

on one patient moved during one mission. 22 If patients

4-' transferred to another plane during a mission

S( 'irterplaned'), or traveled on more than ,one day, addi-

L r iaI records were generated. The maximum number of

records for one complete patient movement was five.

.P.A .%
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Each record contained the following data: name, rank
V.

(or civilian entitlement category), enplaning and deplaning

airfields, originating and destination hospitals, patient

classification, delays before pickup and while enroute,

travel duration, domestic/overseas origin indicator, branch

of service, and mission identification. Due to Privacy Act

and confidentiality restrictions, information on patient

diagnoses and special medical requirements (in cases of

burns or other very serious injuries) were deleted from the

data supplied to us. (These factors are important in medi-

cal flight planning, directly affecting aircraft

routing.) 23  Besides the diagnostic information we could

not access, there were undoubtedly other unrecorded factors

involved in movement decisions, such as humanitarian

motives (e.g., moving patients to hospitals near their home

towns), and the institutional factors we discussed earlier.

Because the aeromedical data collection system is

transaction-oriented, historically recording only actual

movements, it does not show movements that were cancelled,

or other intermediate decisions that were made and then

changed. We therefore do not know how well this data

represents true underlying demand, particularly since we

could not measure the extent to which knowledge of system

schedules influenced the timing of movement requests. The

particular time period we chose may not represent other

periods we did not select. In the time since our sample
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was collected, patient movements nave increased, at an

estimated four to five per cent per year. 7rerefore, we

present the following for descriptive purposes only, to

better acquaint the reader with the probl2m.

Because the patient movement data base did not provide

complete information on aircraft routing,2 4 we obtained all

aeromedical aircraft movement data records for the same

period from a different source. This proved particularly

z :ortiitous, since approximately thirty per cent of the

patient records contained erroneous patient identification,

hospital codes, airport descriptors, and mission data. We

assumed that in conflicts between the two data bases, the

aircraft movement data were correct; in 5'.40 aircraft

. records, we found only two minor errors. In other

instances, particularly with multiple mission patient move-

*ments and multiple trips by the same individual, we were

able to find and correct inconsistencies in patient names,

ranks, classifications, personnel categories, and origins

and destinations by deduction.

. Table 2.9 provides an overview of the patient movement

problem during the ninety day period. 1900 "patients" were

actually 152 medical and 174e non-medical attendants. The

latter were primarily family members accompanying patients.

The attendants group constituted approximately eighteen per

*cert of all those moved. Their principal impact on the

.7 ystem is using limited aircraft capacity.
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The remaining 8836 patients can be further subdivided

into two groups. 1515 recovered patients (classified in

the table as adults and infants) were returned from treat-

ment, typically to their originating medical facility, on

an "opportune basis", which means that they were moved by

the system as time and capacity permitted. However, they

did not receive preference over patients being moved to

treatment, and the time they spent awaiting pickup and en-

route to their destinations was not measured. Deducting

attendant and recovered patient groups from the total

S leaves 7321 actual patients.

We can further classify the actual patients in ways

that relate directly to their handlng. Perhaps the most

important is the precedence accorded them by their medical

Acondition. By DOD regulations, patient movements must be

Precedence

Status Routine Priority Urgent

In-patient 6291 169 142
Out-patient 616 1 0

approved by the ASMRO office. However, ASMRO only regu-

, lates routine, in-patient movements, and simply validates

* the need to move inpatients at a nigher precedence than

routine. Priority precedence requires pickup within 24

hours after movement validation, and delivery within 24

* hours after pickup. Urgent cases are moved immediately,

either by rerouting aircraft, or oy dispatching an aircraft

.q<
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directly from Scott. Priority and urgent destinations are

determined by the doctors involved. Out-patients traveling

to follow-up examinations and treatment not requiring hos-

pital admission are not regulated or validated by ASMRO,

even for routine precedence. in total, 928 movements

(fourteen per cent) were not regulated, and 617 out-patient

movements were neither regulated nor validated.

In terms of planning, urgent patients require the

greatest amount of planner involvement. 142 urgent

patients required the launching of 56 special missions

# dedicated to, in some instances, a single patient, or the

rerouting of aircraft assigned to routine missions. To the

maximum extent possible, planners attempt to reroute air-

craft to pick up urgent cases, balancing the needs of the

.patients already onboard an aircraft flying a scheduled

route and those scheduled but yet to be picked up against

the needs of the urgent patient.

The data also allowed us to classify patients by

origin. Of particular interest are those who come from

overseas origins to destinations in the US. 938 patients

(thirteen per cent) arrived at either Travis AFB or Andrews

AFB frcm Alaska, Hawaii, US territories and foreign

countries. Flights to the US are scheduled and very

stable, so in a sense, they generate scheduled movements

within the US. This means that planners can assume pickup

requirements at Travis and Andrews Air Force Bases will

4, %%
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always exist on specific days of the week, which aids the

scheduling process. Overseas patients do present one

unique planning problem. Of 842 patients who moved between

non-adjacent regions, 506, or sixty per cent, were from

overseas origins. Roughly half of the 506 traveled from

Andrews AFB to Texas or California, and another 101 from

Travis AFB to the Northeast.

Virtually all psychiatric patients and all drug abuse

oatients were active duty personnel. As we mentioned

earlier, these patients are usually treated at facilities

operated by their parent service. 1512, or twenty-one per

cent of all patients were in these two major classes.

The litter, ambulatory and troop classes imply differ-

ent levels of enroute care. Patients in troop status do

not require extensive care enroute, if any, and would be

able to evacuate an aircraft in an emergency without assis-

zance. Litter patients imply significantly greater care

needs, and larger medical crews must be assigned to a

* flight to ensure that litter patients would be evacuated in

emergencies. Enplaning and deplaning patients in the

various classes will differ both in the amount of time

*required, and in the number of crew members or ground crew-

men required.

Because they are patients, moving tnem often involves

more than is apparent in the data. Their individual

-'p r-
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circumstances can greatly complicate transportation plan-

ning. One patient's illness may require a quarantine, bar-

ring the carrying of any other patients. Special medical

V needs, for example, a reduced cabin altitiude for a tho-

racic surgery patient, may impose a direct routing restric-

tion from origin to destination for that patient, reduce

-i aircraft range and hence the choice of destinations because

of the greatly increased fuel consumption at low altitude,

or add additional stops for refueling.

One important observation we made when collecting the

data was an historic lack of automated patient information

* processing support. Until recently, the only computer

available to the organization compiled statistical

summaries for upward reports using historical data

extracted from handwritten movement manifests. In fact,

while patient movement planners now have access to an auto-

mated data base on patients currently being served, that

system was designed only to record and retrieve data, and

not to function directly as a decision support system.

2.3.2 Patient Flow Model. Human interaction in space

• requires both people and places. Having briefly described

the demographic charactersitics of tne system's patients,

we now examine the places, and the interactions among them.

We will attempt to establish as comprehensively as we --an

,°
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the structuring of flows between pairs of and among the

whole system of DOD medical treatment fac-iities.

We have several purposes in mind. We want to identify

factors influencing origi,-o-destination trip production

so that we can better represent the patient demand schedule

in our system model. By a process of abstraction, we will

use a number of analytical techniques to isolate patterns

of movement and construct a flow model. Potts and Oliver

recommend that we develop such models to

I) Represent manifestations of individual and
Imass propensities for interaction;

2) Demonstrate the nature and complimentarity of

supply and demand;

3) Indicate those nodes whose characteristics
-- size , dominance, centrality, etc. -- 3houd
be better understood;

4) Extract the underlying flow structure, its
recognizable order and organization,
cnanneling, and regionalization;

* 5) Allow us to relate flow to the transportation

network and external factors (capacity, cost,
etc.). [POTT72]

Because we were not given individual patient diagnoses, the

first two capabilities cannot be achieved completely. We

have focused our attention on the last three. The last

*capability will be demonstrated in Chapter 6. .
W- will use four means to construct our patient flow

model. First, we will employee aggregate descriptive

statistics to characterize the major flow propensities.

I4 o
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Then, we will analyze nodal hierarchy, by examining the

functional i.nportance of individual nodes. Using dyadic

factor analysis we will then attempt to explain the network

flow structure. Our theoretical rationale for this is that

t-o the extent that the nodal structure is hierarchical, we

would expect the flows to be structured hierarchically

also. Finally, we will look at the generation of movement

requirements over time.

In Table 2.10, we see that of the 500 hospitals from

which patients trips originated or were destined, hospitals

* in San Antonio, TX, alone accounted for nearly one-fifth of

KY all patient destinations. San Antonio and Washingtion,
10

D.C. facilities admitted one-third of all patients moved,

and with Fitzsimmons Army Hospital in Denver and the US Air

Force Regional Hospital at Keesler AFB in Biloxi, MS,

approximately one-half of all patients transported in the

domestic system. Nine groups account for over two-thirds

of all destinations, and for the fifteen hospital groups

listed, the percentage increases to over eighty per cent.

* The colocation of Aeromedical Staging Facilities at bases

serving six of the first seven most frequently used dest-

ination hospital groups is therefore not surprising.

A similar dominance in originating hospitals (Table

2.11) is also present but less pronounced, primarily

because the aeromedical system emphasizes moving patients

-N<, from many smaller medical facilities to a few, very large

.q



TABLE 2 .iO

RANKINGS OF DESTINATION HOSPITALS

N u m b e r Percentage
Servicing of of All

Hospital Groupa Airfield Patients Patients

I. Wilford Hall MC Kelly AFB, 1406 19.21
Brooke Army MC San Antonio, TXb

2. Walter Reed
Army MC

National Naval

MC Bethesda Andrews AFB,

Malcom Grow MC Camp Springs, MD0  1096 14.97

3. Fitzsimmons Buckley ANGB,

Army MC Denver, COb 756 10.33

4. USAF MC Keesler Keesler AFB,

Biloxi, MSb 435 5.94

5.David Grant MC Travis AFB,
Fairfield, CA0  407 5.56

6. Wright-Patterson Wright-Patterson
Regional MC AFB,Dayton, OH 320 4.37

7. Scott AFB Scott AFB,
Regional MC Bellevilie, ILb 307 4.19

8. Portsmouth Naval Norfolk NAS,
Regional MC Norfolk, VA 233 3.02

.-x9. San Diego Naval Mirimar NAS,
Regional MC San Diego, CA 221 3.18

10. Eisenhower Army Hunter AAF,
MC Augusta, GA 180 2.46

l. William Beaumont Biggs AAF,
Army MC El Paso, TX 179 2.45

12.tUSAF Hospital McChord AFB,
McChord Tacoma, WA 169 2.31

"3. Naval Regional NAS JacKsonville,
MC Jacksonville Jacksonville, FL 145 1.98

14. USAF Regional Sheppard AFB,
Hospital Witchita Falls TX 117 1.60

15.'USAF Regional Eglin AFB,
Hospital Eglin Valpariaso, FL 94 1.28

Totals 6065 82.84

a4ospita's served by the same airfield.

• hAn Aeromedical Staging Facility is located here.



156

medical centers. Hospitals in Florida, region 5, and the

Southwest are the largest patient generators.

The relative importance of these facil'ties within

their respective regions varied. In region 3, 91.27 per

cent of all patients moved went to Fitzsimmons Army Hos-

u.. pital, while only 33.47 per cent of all region 2 patients

went to the USAF Regional Hospital at Keesler AFB. The San

Antonio hospitals were also the major regional facility for

region 5 patients, serving 74.35 per cent of all paitents

sent to region 5 hospitals.

Table 2.12 shows that, while fewer than half of all

patients were moved intraregionally, the combination of

- intraregional movements and interregional transfers to

9 fourteen major facilities accounted for 90 per cent of all

trips. Of all 7321 patients moved, only 842 (11.5 per

4. cent) were moved to non-adjacent regions, which constituted

-only 20.75 per cent of all interregional transfers. As we

observed earlier, the majority (506) of those non-adjacent

transfers were patients with origins outside the US. One-

half of that group were sent to the major facilities in

Texas and Washington, D.C.

* Table 2.13 examines interregional transfers from a

slightly diffprent perspective. Given the six regions,

there are 30 possible transfers between regions. rhe first

0 six listed account for over half of all interregional

%,
4I"%
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TABLE 2.11

. RANKINGS OF ORIGINATING HOSPITALS

N u m b e r Percentage
Servicing of of All

Hospital Groupa Airfield PatientS Patients

L.Walter Reed
Army MC
National Naval
MC Bethesda Andrews AFB,
Malcom Grow MC Camp Springs, MD 876 11.97

2. David Grant Travis AFB,
USAF MC Fairfield, CA 502 6.86

3. Wilford Hall MC Kelly AFB,
Brooke Army MC San Antonio, TX 266 3.63

. 4. USAF Regional Eglin AFB,
Hospital Eglin Valparaiso, FL 207 2.83

5. USAF Hospital Patrick AFB,
Patrick Cocoa Beach, FL 194 2.65

6. USAF Hospital Homestead AFB,
Homestead FL 171 2.34

7. USAF Hospital Pope AFB,
Pope Fayetteville, NC 164 2. 24

8. Scott AFB Scott AFB,
Regional MC Belleville, IL 161 2.20

9. Fitzsimmons Buckley ANGB,
Army MC Denver, CO 157 2.14

i. USAF Hospital Luke AFB,
Luke Glendale, AZ 154 2.10

-1.USAF Regional MacDill AFB,
Hospital MacDill Tampa, FL 145 1.98

Ar 12 USAF Hospital Mountain Home AFBI..,

McChord Mountain Home, ID 144 1.97

13. :rwin Army Hosp Salina Municipal
Ft Riley Salina, KS 136 1.86

14. Ft Campbell Ft. Campbell AAF
Army Hospital Hopkinsville, KY L27 1,73

i5. USAF Hospital Elisworth AFB,
Ellsworth Rapid City, SD L08 1.48

Totals 3512 47.97

aHospitals served by the same airfield.

P

0
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TABLE 2.12

PATIENT TRANSFERS

~Percentage

Number of of All
Patients Patients

Patient Group Transferred Transferred

intra-regional transfers
(Origin and destination
hospitals in the same region) 3162 43.80

-nter-regional transfers to
destination hospitals served by
airfields with an ASF:

Kelly AFB 882 12.22
Andrews AFB 797 L1.04
Buckley ANGB 223 3.09
Scott AFB 191 2.65
Travis AFB 142 1.97
Keesler AFB 36 U.5O

-" inter-regional transfers to
destination hospitals served by
airfields without an ASF:

Wright-Patterson AFB 180 2.49
Gray AAF 146 2. 02
Norfolk NAS 143 1.98
McChord AFB 113 1.57
Mirimar NAS 107 1.48
Jacksonville NAS i00 1.39
Lawson AAF 96 1.33
Sheppard AFB 67 0.93

Totals 6498 90.01

transfers, ten for two-thirds, and each &f these cornbi-

nations involved adjacent regions. of the 2059 patients

involved in the first six transfers, 67L were destined for

San Antonio hospitals. 149 of those were overseas patients

.0

%° - .~.--.--,.. ~ *~-V~4 . .
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u.fvec frm Andrews AFB. 343 r ne 363 pal-ents moved fro-i

l ,on 2 eo reqLo- 5 went to San Antonio. Of the 350

reg o: 4 t. region 5 transfers, 317 went to either San

Anmon:o, Wronita Fails or El Paso, 170 from region 4 to San

Anmnio alone.

TABLE 2.13

-NTER-REGIONAL PATIENT TRANSFERSa

IFom To Number of Percentage Number withR :o T Patients of All Destination
Region Region Transferred Transfers at an ASF

2 672 -6.56 551

2 5 369 9."0 343
4 350 8.63 .70

.2 239 5.89 13

6 232 5. 2 25
5 197 4.86 L58

oK

6 1 196 4.83 1-55
6 5 1L57 3.8713

3 153 3.77 44

4 i42 3.50 46

S130 .2G, 65

o3 117 2.88 -100

"" 2 116 2.86 i6

%3 13 2 .79 79
0 4 2 103 2.54 5

Totals 3286 81 .00 1902

aPeccverej oatient and medical atendant -rarstfers are

exc ided.

a I ) i r mancp andi 1.w 9rope2L ties .,am us o f'--

• hat pa t m ovemt 7w; j ,rchca1

, .,- - "K -'K -",T-o e .t
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-~ patuern of intraregional flows between small facilities and

into regional centers, and between interregional centers,

among nodes that are aiso ierarchically ordered. To test

these propositions, we first examined the data for evidence

or hierarchical structure or ordering among individual

,y nodes Of 215 civil airports and military bases that

served as either an origin, destination, or both, 54

appeared at least 40 times in patient records, and in all

but 60 of 7321 records. In other words, only 60 origin-

,destination pairings did not contain at least one member of

the set. 6345 patient origins and 6839 destinations, 86.7

and 93.4 per cent of all patients respectivety, were bases

:n this set. 7261, or 99.2 per- cent, of all patient rove-

ments began or ended at one of the 54 bases, and in 5923

(80.9 per cent) cases, both the origin and che destination

were part of the set.

Comparing the largest and smallest entries in Tables

2.10 and 2.11, it is evident that thert is considerable

difference in the size of nodes as measured by the numbers

* of patients they send to or receive from other facilities.

Except for Kelly, Scott and Andrews Air Force Bases, the

'- " rankings and membership of the largest origin and dest-

* ination hospital groups are different, and the relative

magnitudes are large between the first and fifteenth ranked

hospitals. With several hundred different hospitals, there

* must be many hospitals sending or receiving very few or

0

0U
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even single patients. Figure 2.10 illustrates this prepon-

derance of low-volume nodes and the relative scarcity of

,igh-volume nodes.

24 18

22 .- 16-

[d

20,

F Class sizes F 14 CLass sizes
r 18 A 1-32 A 40-80

C 16 " B 33-96 B 81-120

q C 97-224 ( C 121-160q 161-200
14 -D 225-480 1

14. 481-992 e 0 21-400

ee

12 , F >992 F >400

6 4I

2 FTiF~ji L I1
~A B C C E F Patients A 2 C H F Patients

Received Sent
Destinations Origins

Figure 2.10. Patient oriqin and destination frequencies.

* Lowe and Moryadas asser: that the principal deter-

minants of the volume of interaction (flow) between nodes

dre Their size (as either origins or destinations) and the

• ."uistance separating them. [LOWE75] We are principally con-

• cerned with the first. More specifically, we need to

%- -estabiish the flow propensities between nodes, and the flow

%"
,m

A ."wA..C N•~-



162

and salient flows to establish flow propensity, and factor

analysis to extract the structural patterns.

The method of dominant flows is widely used to estab-

,ish a dominance order among nodes. If we define f. as

the actual flow of patients from facility i to facility j,

* .f, F = [fij] as the matrix of all flows, then define

(2.1)

the total flow into facility j, to be the functional impor-

tance of node j. For any i, if the largest flow in row i

is fL ' and F i < Fj, then f * is a dominant flow.

When the dominance technique is applied to flows among

the 54 major hospital groups, the graph in Figure 2.11

indicates the nature of the dominance order and channeling

of flows. Separate subsystems based on flows into the

region 3 and 4 centers (Buckley and Travis) result in a

partitioning of flows in the system. The flow from GFA to

TCM in the Pacific Northwest is subordinate to the flow

' from TCM to Travis. The largest subsystem of dominant

'flows links four regional centers, Andrews, Kelly, Scott

and Keesler. Within that subsystem, two centers, Scott and

0Keesler, are subordinate to Kelly and Andrews, given the

nigh flows (1406 and 1096) into the latter two nodes.

.o
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The Southeastern US is effectively subdivided into subord-

inate flow networks feeding the two largest nodes. Also

note the further subordination of flows into ELP and BIX.

'-. Underlying three patterns (TBN-BKF, POB-ADW, and LUF-ELP)

is a standing arrangement recognized by ASMRG between two

hospital commanders for the transfer of patients between

* >-.. their two facilities. In each instance, these patterns are

aligned with interregional trunk routes.

• " Soja (LOWE75] developed a second method Df flow propen-

sity that identifies salient flows, those that are signif-

* icantly higher than expected, based on the r-by-c contin-

gency table statistical technique. He defines the the sal-

ience measure of flow fij as

K1  ' 
( 2 . 2 )

where

V4 \ (2.3)

* in which cli fractional term is the proportion of all

patient flows destined for node j, and the second term is

the total flow originating at node i. That is, if node j

* receives x per cent of all patients, then that same propor-

A-' , tion should originate at all Trigihs. The resulting flow

hierarchy identified by the salience techntque is shown in

*Figure 2.12.

-4Z
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Dominance and salience analyses strongly suggest that

patient flow propensities are regional. To find the

regional patterns, we use dyadic factor analysis. [LOWE75)

Dyads are groups of origins and destinations. Since the

flow matrix contains all flow transactions between all

origin (row)-destination (column) pairs, by applying factor

A. analysis on the flow matrix, functional regions can be

identified based upon similarities in fl,-w patterns.

Factor analysis uncovers the r common factors (or

.4 components) that "explain" the flow data and account for

the maximum possible variance. Where salience and domi-

nance are descriptive, factor analysis is explanatory; the

factors are assumed to be causal in nature, scientifically

replicable and of theoretical interest, determining the

correlation among variables. [IMSL82] Each factor is a

group of nodes among which there is maximum homogeneity.

A Between factors groups, there is maximum heterogeneity; fOL

maximum explanation, the factor-analytic routine uses

orthogonal rotation to reduce correlation among factors to

zero. Total initial variance is iteratively reduced in

diminishing amounts as residual correlation is computed and

each factor is extracted. The variances accounted for by

each factor, then, are additive.

I Initially, the factors are devoid of any substantive

0 meaning. The principal analytical task is to interpret the



* ;167

results in terms o. rea' phenomena associated with the

[riginal variables. BAS1831 To do this, high a tor

-l oadings and factor scores are taken to mean that a high

correlation exists oetween the orginal variables and those

scores. We intrepreted the factors to be characteristic

linkages between hospitals based on similarities (common

origins and destinations) and intensities (volumes) of

flows. Based on our dominance and salience maps, we hypo-

thesized that the linkages would delineate functional

regions within the US.

Table 2.14 reports the total variance explained by the

factor analysis using the IMSL Library on a CRAY-IS corn-

puter. Of the total variation of 54.0023, 48.3083 (89.46

I , TABLE 2.14

AEROMEDICAL PATIENT FLOW DYADIC FACTOR ANALYSIS RESULTS

Per Cent
Total Variance 54.0023 100.00

Variance Explained
'V by Each Basic Pattern

* 13.9866 25.90
2 9.6297 17 . 83
3 6. 4314 11.91
4 5.5584 10.29
5 3.5042 6.49
6 2.1413 3.97
7 1 .7300 3 .20
8 1.4591 2 .70

" 9 1.3187 2 .44
.0 12525 2.32

I 1.2964 2 .40

* Totals 48.3083 89.46

F r.I, ,.

"p.



F1680

per cent) is explained by the eleven most signif-icant

factors. The first five components appear to be

regionalized flows into the regional centers, which had

factor loadings 5 or more standard deviations from the mean

loading. Factor scores were greater than 0.5 for all ori-

gins connected to them in Figure 2.13. Some exceeded 0.9.

Relative loadings for the first five patterns reflect a

nearly inverse linear relationship with the number of ori-

gins highly correlated with each major des,_ination. The

sixth factnr is flow from two Arizona hospital groups into

El Paso, TX, one of the so-called approved local agreements

recognized by ASMRO as exempt from the nearest facility

rule. in factors seven through eleven, origin-destination

relationships are reversed. (We could not interpret the

eighth factor because no factor scores exceeded 0.3).

Based on these results, we conclude that the dominant

patient flows are highly regionalized and interconnect the

most dominant nodes within -he nodal hierarchy. Strong

'A internal linkages appear to exist between origins and

* destinations. Further, these findings correspond directly

with our initial descriptive observations -,C the relative

importance of a few major centers as destinations, with

* relatively more significant origins. The paruitionings

indicate that patient movements are not concentrated in A

single geographical area, but are dispersed through six or

0 seven major subregions extending over almost ail of the US.

'4%
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To establish the chronological patterns of patient

flzw, we categorLzed paLient movement by "he first day the

patient could be moved. We were particularly interested in

the variety of daily movement demands, in terms of the num-

ber of discrete stops involved (since this number is lim-

ited oy fleet size, operating rules governing the length of

the crew duty day and the maximum number of stops per route

allowed, route segment lengths and ground stop durations),

and the pattern of demand over the days of the week. We

hypothesized that midweek and late week demands would

exceed the maximum number of stops that could be made that

would provide one-day service to every patient.
t ABLE 2.15

DAILY PATIENT MOVEMENT DEMAND

Day of the Week (Demand/Stops)

Week Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 84/62 106/60 73/57 16/14 6/9

2 70/48 90/60 82/64 112/72 23/29 15/17 14/15

3 60/45 97/63 81/56 113/58 79/59 19/20 20/18

4 76/52 85/61 60/52 25/24 63/49 18/20 33/21

5 79/52 114/60 75/52 100/53 76/56 20/21 12/16

* 6 95/58 83/57 89/64 87/57 71/55 17/19 26/22

7 65/44 84/66 70/54 100/64 65/56 20/24 21/22

8 72/52 78/58 53/59 67/42 29/29 L6/17 9/12

9 10/14 34/35 44/41 44/39 24/26 21/22 12/13

io 13/16 61/51 83/54 91/56 58/42 21/20 32/30

* 11 87/52 80/56 78/44 116/62 76/56 27/27 31/28

12 75/22 88/55 63/49 104/55 91/61 15/16 30/25

13 86/53 65/48 71/51 118/63 76/58 20/22 38/36

:.r 1 83/45 62/34

Demand 77.78 84.78 77.00 106.2 70.00 18.78 22.00

Stops 43.33 57.33 54.22 60.00 52.44 20.67 23.56
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In Table 2.15, the entries show for each day the number

of distinct origin-destination movement combinations (left)

with the number of different bases in those combinations.

That is, only one movement was counted even if several

patients required transfer between the same two bases on

the same day. And, if the same base served as both an ori-

gin and a destination, it was only counted once. This pro-

vides an indication of how many stops were fequired on that

day to make all transfers.

To test the null hypothesis that mean daily demands are
0tne same, a one way analysis of variance procedure was

used. Because Thursday of week 5 and the Mondays in weeks

10 and 11 were holidays (Thanksgiving, Christmas and New

Years respectively), demands in those weeks were clearly

much lower. These and the partial weeks (I and 14) were

omitted. The tabulated F value to test the null hypo-

thesis of no difference in daily means at a level of

significance of a = .05, 6 degrees of freedom among the

_ daily samples, and 56 degrees among replications, was F 0 5

(6,56) = 2.28, and F.0 1  (6,56) = 3.16. [MEND68] It is

5 clear that the computed F value of 66.3 exceeds both tabu-

lated values and thus falls in the rejected region. We

0
therefore reject the null hypothesis and conclude that a

V.

significant difference exists between the daily mean number

of patients requiring movement. Using Tukey's ,-test to

c.- . j compare all pairs of daily means to test the null



175

hypothesis of mean equality, the tabulated q statistic for

7 days and 56 degrees of freedom is 17.33, with a proba-

bility of falsely rejecting the null hypothesis on at least

. one comparison of = .05. Grouping the means in the

following way to show pairs that differ by more than 17.33,

18.78 22.00 77.78 84.78 77.00 70.00 106.2

[Sat Sun] [Mon Tues Wed Fri] [Thurs]

we would reject the null hypothesis for pairs that include

VSaturday or Sunday and any weekday, Thursday and any other

%day, and the other four weeKdays and any cther days. We

can conclude, then, that weekday demands are significantly

higher than on weekends, and that Thursdays produce partic-

ularly high movement requirements.

To conclude, our evaluations of patient flows suggest

several salient characteristics of patient movement. Flow

hierarchy is related to the nodal hierarchy; the largest

nodes in terms of numbers of patient origins and desti-

nations are involved in the largest flows. The structural

flow patterns reflect a strong regionalization coupled witn

large flows between region centers, and tney cover

virtually all of the continental US. Fewer destinations

have relatively importance than many more relatively less

important destinations. And finaily, there aro pronounced

differences in demand between days of the week, with the

number of stops required greater than the maximum possible

under current mission levels and rules.
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2.3.3 Analysis of the Air Route Network. The last section

addressed the structure of patient movement demand, but not

how that demand was actually met. Patient transportation

needs focus on origin and destination medical facilities

locations. Movement needs are met by assigning aircraft to

routes interconnecting patient origins and destinations.

Patient flow and aircraft routing structures are certainly

related, but not identical, since the routing structure

V must also include points where patients can be transferred

from one aircraft to another and where patients, aircraft

and crews can be accomodated overnight. The purpose of

this section is to examine the aircraft routing structure

used to satisfy the demand just described.

The function of a route is to contribute to movement

efficiency by structuring flows. By directing and agglo-

merating individual patient movements, the routing struc-

ture greatly reduces the distances that would have to be

A. )traveled to serve each individual separately. Different

Aroute configurations can yield widely varied efficiencies,

and the presence or absence of alternative routes can

greatly influence how directly a patient reaches his or her

destination. Because patient transfer demand occurs over

time, the frequency of travel over routes determines how

'Ft-en each node is served, and, therefore influences how

quickly the patient is served. From the last section, we

know that some nodes generate high demands and receive
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.0 disproportionately high levels of patients for treatment.

The essential impact of a routing structure, then, is to

enhance the relative accessibility of the functionally more

important nodes on the network. We would expect a routing

system to consist of high capacity, high frequency routes

between larger nodes (and connecting additional nodes along

the path between them), direct links to smaller nodes in

c-ose proximity to the larger nodes, and subnetworks inter-

connecting smaller nodes in close proximity to each other.

Finally, the number of routes should vary inversely with

* tne volume of flow and distance or length, and directly

with node density in a geographic area.

In this section we will analyze the aeromedical air-

craft routing structure from aircraft data gathered during

the same period in which the patient movements described in

The last section occurred. Graphically, Figure 2.14 shows

tne route segments that were flown most frequently.

Knowing that the central base is Scott AFB, that crews and

aircraft must pass through the central base frequently, and

rom the last section, that destinations are most

Frequently the regional centers and a few major medical

facilities, the trunk system and the resulting circulation

atterns are apparent. While useful, this depiction con-

.ains only about one-third of the total number of route

segments, and rmits a considerable portion of the stric-

ture. A simple frequency count revealed that over 855



* 178

-4
L L4

0o

DCz.

.- 4

0



* 179

segments were flown once, and another 213 only twice. The

resulting graphic depiction with these sPgments added would

bE uninterpretable, yet still omit the remaining third of

all segments flown. Beyond providing an overview of the

structure, the route structure diagram does not adequately

-provide insights into the underlying network structure.

The fact remains, though, that one of the principal

m nethods in route structure analysis is constructing and

analyzing maps. Maps are very useful in presenting spatial

relationships, out they vary considerably in the amount of

information they contain. Usually, but not necessarily,

they are two-dimensional projections, with one or at most

only a few metrics. Mapping involves considerable choice,

selecting the type of projection; depicting route locations

(and their absence); differentiating route segments by

type, function, purpose, or quality; measuring length,

capacity, or other salient characteristics; displaying and

.interoretating relationships, such as intersections; and

showing the relative importance or value of network enti-

ies. in short, choosing what and how to depict involves

more judgement than science, a consistent theme of the sys-

tems approach.

The closest that we have found to a standard for ana-

-yzing and interpreting transportdtLon network route struc-

* -ures is linear graph theory, a branch of combinatorial

topology. Through considerable abstraction, a graph-

NEO
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theoretic approach maps a route structure into a minimal

set of characteristics. Boundaries, scale, proportion, and

most other information are lost, and the resulting repre-

sentation often introduces meaningless new structures, such

as the mid-air intersection of route seqnents. And, while

preserving spatial sequences, temporal relationships are

lost. Because the current mode of operation is demand-

responsive routing, changes over time are the norm, and not

the exception. On the other hand, when faced with making

sense out of thousands of segments connecting several hun-

dred places, we can usefully exploit graph-theoretic tech-

niques to reduce the data to something meaningful as one

means to better understanding.

In our discussion of route structure and routing prob-

lems, we will make use of the following concepts. Given

the set of nodes N = (l,2,...,n}, n = NI, we define the

directed arc from node ii to node i2 , representing the

direct connection of two places, as the ordered pair,

(i1 ,i2 ), where il and i2 index the initial and final (or

terminal) nodes of the arc. Given the set of all arcs, A -

(1,2,...,a), a = A, the graph G = (N,A}. We assume there

exists a function d:A-->C, where the matrix C I [cj] and

cj is the cost of traveling from city i to city j.

A path is an ordered sequence of directed aLcs

DJP (

"J Kd"
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where the final node of one arc is the initial node of the

next arc. An elementary path has no repeated nodes, and in

an elementary circuit, i0 = ik .  if a path exists between

them, ik is accessible from ij. If a graph is connected,

each node is accessible from every other node. In a com-

plete graDh, directed arcs connect every node pair. A sub-

graph contains nodes that are not connected with other

nodes; a graph may consist of several disconnected sub-

graphs. A spanning subgraph contains all nodes, but not

all arcs of G. In planar graphs, arcs only intersect at

0 tne nodes. Since graphs of air route networks are virtu-

ally certain to intersect at points other than nodes, we

assume they are non-planar.

The number of arcs entering or leaving (incident to) a

node, the ratio of arcs to nodes, and other characteristics

.f a graph can be expressed by a set of summary statistics.

The concept of distance between nodes in a graph varies

trom the usual meaning, and refers to the number of arcs in

The path connecting the two nodes. Connectivity is defined

as the degree to which the network as a whole and indi-

vidual nodes or subsets of nodes are connected. As a

structural property, connectivity provides insight into the

relative simplicity or complexity of a network.

An arc (ij) in our graph represents all flights

between departure airfield i and arrival airfield j. The
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routing graph is easily transformed into the connection or

binary connectivity matrix B = [bi, where bij = 1 if arc

(i,j) exists, and zero otherwise. To find all the minimum

distances dij between node pairs i and j, matrix B is

successively multiplied by itself (powered) until all bij

are greater than zero. Where B shows the presence or

absence of direct (single arc) connections between nodes,

the non-zero elements of B2 = BXB are the number of two-arc

paths between any two nodes. The power n tndt results in

4 an element changing from zero for the first time >s the

minimum distance between its associated node pair. The
6

power n such that all shortest paths had been found is the

diameter of the network, and reflects the distance between

the two nodes (or several pairs) most "remote" from each

other. With these basic elements, we can define the graph-

t-heoretic measures in Table 2.16.

The Konig and accessibility indices evaluate individual

node connectivity. Accessibility indicates how "reachable"

the node is. The most central places in the network have

* the lowest Konig indices. (A simpler measure would be the

sum of the columns of B, which would show relative direct,

but not indirect, accessibility). We would expect the most

!• frequently used patient destinations and the staging facil-

ity locations to be the most central.

The remaining indices in Table 2.16 measure network

connectivity. The beta index measures linkage intensity,
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* TABLE 2.16

GRAPH-THEORETIC MEASURES

Name ot index Computational formula

Accesibility
:ndex -

Xonig 7ndex K .w,,

Beta -ndex

Gamma Index ",

Cyclomatic Number

Alpha index,-
' ,i -li- i 2- ,,Il

Dispersion index ) \ (

I - I

where
n the number of nodes
d. distance from node i to j
a the number of arcs
g : the number of subgraphs

the average number of arcs per node. Gamma computes the

-evei of connectivity (or sparsity) as the ratio of actual

t-3O to th'e raximum possible number of arcs. Cjlomatic number

S.[ : the level or degree of redundancy in a graph. The alpha

-V ndex relates actual to maximum redundancy. Dispersion

O refers to the degree of network compactness as a function

of the spatial arrancement of thf nodes. Dividing the

L4. •

.,

/r%
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dispersion index by the maximum possible number of nodes

gives average distance from any node to any other node.

TABLE 2.17

AEROMEDICAL ROUTING NETWORK STATISTICS

Number of arcs (a) 1405

Number of nodes (n) 215

Connectedness ( ) .061

Cyclomatic number (p) 11i91

Redundancy (a) .052

Linkage intensity (IS) 6.53

* Diamter 7

Dispersion (D(G)) 132957

Average distance 2.88

TABLE 2.18

NODES WITH HIGH CONNECTIVITY

Konig Incidence Number of
Base Accessibility Index In Out Total Accesses

BLV 373 4 78 92 170 367
SKF 413 4 53 49 102 218
ADW 417 4 57 55 112 186
BIX 451 4 40 30 70 160

P SUU 496 4 25 25 50 84
BKF 527 4 18 24 42 106
SPS 512 4 21 17 38 45
SDF 516 4 12 14 26 29
OR 501 5 21 15 36 55
LSF 547 4 16 1T 33 43
: AB 544 4 11 12 23 21
HIF 540 4 6 7 13 29
VPS 551 4 9 14 23 37
TCM 574 4 9 i0 19 37
SLN 567 4 7 9 16 50
NKX 583 4 13 15 28 46

0 % ,
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Toola-e 2.18 lists the most central, accessiole, directly

cc:'::ected and most frequently transited places (shown a,

- t-e total number of accesses, the sum of fliqhts into and

-" or each node). The same nodes that are major patient

de:;t Inat ions are also the most accessible in the route

'cure. Frequency counts of the Koniq indiex fcr the 2 i5

7 -noes were 48, 134, 32 and I for values 4 thrcugh 7 respec-

lveiy. Only Scott had an accessibility in:.dex less than

430, and only 10 less than 500. The majority were in the

-ance off 500-800; only five nodes exceeded 800. The

:i.ignesz was 998. There were 97 in the 501-600 range, 58

-etween 601 and 700, and 44 from 701 to 800.

Despite the fact that the structure is relatively weakly

K connected, without a significant degree of connectedness

and r -dundancy, the maximum distance (diameter) is only

seven, and only one node pair is that remote. The apparent

Sreasomn is a relatively flat hierarchical structure, with a

:vw :entrai places connected to a large number of nodes by

* lingle arcs or very short paths. Further evidence ofc a

-\L' hgncLy branched hierarchy is given by other characteristics
-,<

.4 .or the networK.

!,r a number of reasoiis, path lengths are relatively

hoort. First, we nave already noted tne tendency toward

_rtrareg(onai transfers among relatively close facilities.

Secondly, the range -f the aircraft is limited, such that
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many node pairs cannot possibly be directly connected. And

third, this network shares a characteristic common in many

transportation systems: since the central places are rela-

tively far apart, long interconnecting route segments, even

ones that carry high volumes, would tend to bypass stops

where additional patients could be served, and schedulers

are very reluctant to miss an opportunity to make an extra

* pickup or delivery.

To verify some of these assertions, we extracted a num-

ber of network attributes from the flight data. Figure

* 2.i5 classifies route segments by flying time, frequency,

and type of connection. The flying time histogram shows

that the average flight duration was 1. 14 hours, which

corresponded to an average great circle distance of 339

nautical miles. Segment frequency is markedly skewed

toward low values; more than one third of the 3663 flights

were the only one or two over a given segment. Again, this

probably reflects the impact of demand-responsive sched-

1- uling. Functionally, the highest proportion of flights

* were within regions, owing to the fact that 43 per cent of

all transfers were intraregional. Interreqional flight
4-

activity was substantially less. Flights between the cen-

* trai base and oetween staging bases were flown in numbers

disproportionately high relative to the limited number of

possible connections.

0

0

-...
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This preliminary view of the route structure seems to

indicate a route hierarchy involving the most central

*" places connected by high-volume trunk routes, and other

* less important places served by medium-volume regional and

'nterregional feeder structures. But, this accounts for

onlv one-third of the total number of route segments flown.

Patient flows indicated a concentration of low-volume nodes

clustered around or between regional centers in collector/

distributor subnetworks. To determine if there are corre-

sponding routing substructures, we applied principal compo-

rents and factor analysis to the binary connectivity

matrix, techniques that are widely used to find partitioned

subregional networks. [LOWE75] The techniques ased are the

same as those employed in patient flow analysis. The

results are summarized in Table 2.19

The first factor produced high loadings on arcs

eminating from the central base (Scott). In general, bases

with very high numbers of arcs incident out of them induce

nigh variation. In effect, Scott's associated region was

much of the US insofar as many one-time flights, partic-

ularly urgent misions, orginated there. Factor loadings

varied inversely with the incidence into the base connected

with Scott. In other words, the high degreee of variance

explained is attributable to the high degree of

4.. connectedness Scott has with a large number of bases.

I

10V.* - .'
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TABLE 2.19

AEROMEDICAL ROUTE NETWORK FACTOR ANALYSIS RESULTS

Per Cent
Total Variance 215.0000 100.00

- Variance Explained

by Each Basic Pattern

1 23.3075 10.84

7., 2 13.5435 6.30
3 14.0071 6.51
4 8.4183 3.92
5 7.1063 3.31
6 6.7725 3.15
7 6.5691 3.06
8 5.4825 2.55
9 6.1669 2.87
10 4.5016 2.09

Totals 95.8753 44.60

The second and third factors show similar relationships

between Andrews and Kelly and bases to which they are

directly connected, although virtually all the bases are in

the respective regions served by the two. Two other bases

in region 2 had factor scores one or more standard devia-

A-
tions above the mean, reflecting the presence of subord-

* inate bases with relatively high connectedness, though sub-

stantially less than the regional centers.

4. This effect increases through the remaining factors,

.w. i.e., each factor includes one or two bases with very

significant (by five or more standard deviations) factor

scores and several others with scores one to four devia-

tions away from the mean. In some instances a smaller

0X- o
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pattern existed with factor scores varying in the opposite

direction, but these were usually better accounted for in

ozher factors. If the interconnections among bases with

high factor scores are recorded in a connectivity matrix,

the row sums and factor scores display a very discernible

relationship. This indicates that the smaller subnetworks

selected oy lower order factors are fairly hiqhly inter-

connected, with typical sparsities of .35 to .50. These

subnetworks tend to be very tightly concentrated geograph-

Scally. (See Figure 2.16) This should be expected, since

• we have already seen that relatively short, intraregional

rcute segments are the most frequently flown. Other sub-

networks extracted by each factor were:

Principal
Factor Subnetwork Area Base(s)

A Southwest
A (Southern Region 4) Travis (SUU)

5 Mississippi-Florida Biloxi (BIX)

6 Region 3 and Kansas Buckley (BKF)

7 Southeast Augusta, GA (AGS)
(Region 2) Fort Benning, GA (LSF)

8 Region 6 Wright-Patterson (FFO)

S 9 New York-New England Limestone AFB (LIZ)
(Region 1) Plattsburgh AFB (PBG)

10 Pacific Northwest McChord AFB (TCM)

* The temporal pattern of flights was derived from the

:light segment data set, which contained some 3600 seg-

ments. In several years, the basic weekly and monthly

schedule nave not changed, despite the claim made by some

" system managers tnat demand not only had increased, but

.5/,
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VF

NKX --7SSF @\'

Figure 2.16. Regional Subnetworks.

that the basic patterns had changed substantially. The

most significant sources of variation between scheduled and

actual routes were changes in patient condition and

weather, and the need to reroute routine missions to handle

* .roughly 60 per cent of all urgent cases. [DEPA78b] Figure

2.17 shows the typical patterns and numbers of flights each

day. The 490 routine missions ranged from three to ten

segments (most flights were seven or eight) and up to i.0

flying hours and 16.0 total crew duty hours in length. 56
0

urgent missions (not shown) ranged from two to six segments

.. and up to 11.3 hours in length; most served one or two

urgent patient movements that could not be handled by rou-

tine mission rerouting, and departed and returned to Scott

AFB. Because many urgent cases are handled by preempting

'routine missions, the daily schedule can be considerably

0 ... ...
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disrupted, forcing rout-ne pat.ents to make unscheduled

Dvernight stops.

By virtue of the fact that the system. regularly served

some 50-60 major origination and dest inatLon points, and

a.~sc nhad to stop at another 150 over a ninety (day pericd,

-- -r.y of those only once, trne most critic-al prcblems that

emerge are the choice and sequenci;ng of St:'Dos, wni~cf are

limited to eight per mission, and desigqnatina tn'p st arting

%I ~and ending points for each mission, sin.,ce tnese directly

affect oreceding and f'ol'lowing days. As the weeN K-y sched-

i nows fairly clearly, some regions do not receive any

ser Vc n oe four days_. Tne siacK available o n

is not r eadily useabie, given tnrie patern o)f weekday

c.emand coocent:rarii.-n we saw in the flow data. And, giJven

t rie already r eLa tivelIy short f Light duratis)ns, reducing

xi~v idual segment distances is not as imPortant in thils

4 ~ Droblem as in oteswhere cost minimization' is the para

-o unt goal. Such reductions will not greatiy increase the

number of stops tnat can be made, which is driven t:o a

i~gnticant extent b y ground time at. each stop (20-40

mi nu tes) and the two-hour pref light per Dd, both of wn icn

0 ccunt for about one-half of the 16-hour maximum. crew duty

Iay orf A- eight-sto-p mission. Recalling 'sUr djiscussion of

ne cncice of patilent destinations, we can see that that

coul ,d be an area where significant improvements could be

%I realized, by reducing the number or unnecessary stops.

hil
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2.3.4 System Performance. Atemoting to characrerize indi-

vidual and aggregate patient trips Is d;Lficuit because the

movement data contained only final movement details. No

Vrecord was available to show the intended :rDvements and all

changes. Because of reroutings to serve rIher precedence

patients, routine patients were frequent-r,v sub IctPd to

,.4 unplanned overnight delays. But Lhe data does reveal some

general characteristics of actual trips, such as those in

Figure 2. 20. Total time in-transit includes all time

elapsed from the first da the patient could have been

moved. The number of different missions gives a general

dea of how many overnight delays patients experienced,

.-either because of unplanned routing changes or because

t:heir destinations were not served by the same mission that

picked them ip. System managers, of course, want to reduce

both in-transit time and the number of enroute delays

patients have to endure.

We also examined how well the system met the criteria

for timely pickup and delivery. Routine patients were

picked up within 48 hours in 5753 oF 6907 cases; only 446

were not picked up within the 72-hour limit. 10 priority

)atients were not picked up within one ,,-v, and all urgent
cases were provided same-day service. 590(1 routine

- pat ients were delivered either rhe same day )r The next day

.- fter being picked up, and onLy 18 wer- not delivered

. within the 72-hour limit. One priority patient out of 170 ,1

0L

4 -4 - 4f*4. .-.- 4 4' ~p.

.' .
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Figure 2.18. Patient trip characteristic distributions.

was deiivered in more than one day, and all urgents were

picked up and delivered in one day. System managers said

that if complete delivery could not be provided on the same

mission, a delay at the pickup point was usually preferable

to enroute stops. However, movement toward the sti-

natio)n, particularly in movements between distant points,

was better facilitated if patients were moved to inter-V

mediate points closer to the destination.

lt is much more difficult to assess service quality, ,r

even specify measurable attributes of quality. As we

discussed in the section on performance measures, the

number of stops any one patient makes is a function of his

own transfer points and those of all others on-board the
,
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same airplane. Certainly, the most direct flights are

preferable to the individual patient, but since the total

number of stops is a significant limit, directness has to

be balanced. If we Look for routings that wiil allow addi-

tional stops, we might improve the overnight delay problem,

'but we will reduce the quality of service in other

respects, for example, by reducing directness.

Further research is needed to determine appropriate

measures of performance. If patient diagnostic codes are

available, techniques such as logit analysis could be

* applied to quantify such things as destination assignment

tendencies, and some of the underlying biases we asserted

in moving patients between hospitals operated by the same

service branch. The benefits and costs of travel to indi-

vidual patients are not well understood, and are confounded
C.

W by such things as the lack of population, workload and care

cost data that allow other alternatives to travel to be

.1, adequately assessed.

V2.3.5 Formulation of the Problem. From our discussions of

the general characteristics of the DOD Military Health Ser-

vices System and the nature of the aeromedical transpor-

tation problem, it should be evident that attempts to

improve the transportation subsystem mu3t be made in the

context uf improving the whole DOD medical program. Other-

wise, to simply concentrate on making it more "efficient"

0

A may lead us to do, albeit very precisely, the wrong thing.,

C
v..-
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W e should begin with an idea of what we want to accomplish.

E'en this is difficuit, because of the current organiza-

zional structure, institutional planning and decision prac-
N

tices, operating rules, and perhaps most critically, the

lack of suitable planning information and the mechanisms to

collect, process and distribute that information for deci-

z.ion making.

if these problems were resolved, our ideal for the DOD

Medical system would be that depicted by the diagram in

Figure 2. 19. The hierarchical structure :s intended to

DOD Health
Mission Management

,oal-Setting Action Control

Health Systems DOD Health Care i Mission
Deveiopment Program Management Performance
---------- T --- T Evaluation

and Control
Plannn esac System

Systems

Design

Goal-Setting Action Control* 7 "--__

Health Care A Health
,?."Program Aeoeia 1 Program
%lnnn TreatmenPrrm

Pg rannng I Transportation i Management
-. . Information

. Direct Destination

I Planning
CHAMPtJSL

A. Movement
Other Planning

Figure 2.19. An deal DOD health management system.

2 7
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convey two principal concepts: a decentralized allocation

of responsibility for planning, activating and controlling

missions and individual mission programs; and a coord-

ination mechanism by which the actions of all system

participants are directed toward enhancing whole system

performance. Current practices of isolating and confining

decision making, enforcing strict hierarchical, preemptive

or non-reviewabie, sequential decision processes woulc be

replaced with interactive processes of the type we

recommended for destination and Lovement planning. The

current system seems tn be particularly lacking in the

%ability to utilize data and information on past resource

allocations and system performance to find ways to improve

-he future use of resources.

With programs underway to create such system elements

as the Resource Analysis and Planning System for the Assis-

tant Secretary of Defense for Health Affairs office

'STCL82], DOD-wide enrollment of all eligible beneficiaries

[DOYL82], a uniform set of cost accounts for all health

* care activities [FRAG82], and facility treatment cachement

area identification, many of the informational deficiencies

will be eliminated. Rather than wait for these efforts to

* ne completed, we propose a planning model tjit con support

the health care system that DOD eventually adopo.

We will develop a transportation resource allocation

mechanism that will provide service no worse than is
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currently provided, but will identify ways to better use

resources to improve and provide increased opportunities

for patient movement. At a minimum, the transportation

planning system should incorporate the salient character-

istics of the aeromedical system we have identified:

patient movemenr reF-ponqP criteria for pickup and delivery;

patient flows that vary structurally and over time;

cperating rules and the lack of aircraft that together do

not allow all demand points points to be serviced each day;

the need to conserve fuel and other resources by finding

*• routes that reduce travel time, out not patient service;

and zhe need to respond to special patient requirements.

Most importantly, the model should find ways to transfer

patients as expeditiously as possible.

For the long run, we should design the mechanism so

,-hat it can be embedded in the global DOD health management

system, where it wouid have access to data on costs, facil-

,ity capacities and capabilities, patient demands, etc.,

with which to make more comprehensive cost-benefit deci-

sions. It should also be capable of providing answers to

"rger concerns, such as what tradeoffs can be achieved

between changing hospital capacities and capabilities and0

•ncreasing or decreasing the need for transportation, in

2' <erms of client benefit.

S °°

0E.i
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ENDNOTES

I. En the absence of standard terminology we will use aero-

medical transportation to refer to the movement of patients

by aircraft to or between medical facilities. The term

aeromedical is formed from the root words aerial and medi-

cal. In emergencies or wartime, the term aeromedical evac-

uation is often subsitutued. The military acronym 'CONUS'

refers to the continental United States, and domestic to

the aeromedical system within the US.

2. The cost of equipping a helicopter ambulance is about

$500,000, and about the same amount is needed annually to

staff and operate it. [HELI831 S

3. C-141B is the US Air Force designation for the Lockheed

Starlifter transport. The C-9A Nightingale is the spec- 4

ially modified McDonnell Douglas DC-9 commercial transport

used exclusively for aeromedical transportation.

4. As recent studies indicate, the exact population of

eligible beneficiaries is not known. Recent efforts to

establish an identification system may produce the first

accurate estimate by 1984. Not only is the exact size of

the population unknown; beneficiary location with respect

to medical facilities has only recently been studied.

[DOYL821

5. Because active diit 1 personnel are represented in both

4 objectives, it might appear that the first objective is



0 205

subsumed by the second. However, in the first the

beneficiary of goal attainment is the organization, while

the individual benefits from the second.

6. Evacuation points are those airfields in the US to which

the evacuated casualties are flown from a war theater on

temporarily converted cargo airplanes.

7. We base our claim of stability on 3tatLstics on the

'evel of aeromedical services from 1973-1983, which show i

fixed number of hours flown each year, and only a modest

* increase (approximately 4 per cent per year) in patients

carried, reflecting reductions in clinical staffs and

S acilities and in entitlement programs. [JONE82]

8. This deficiency holds for a European conflict, as a

recent planning conference established, and is apparently

:rue for potential conflicts in other parts of the world.

LDEPA83b! Even during the Vietnam War, patient care and

-ransportation requirements did not severely tax the Mili-

tarv Health Services System.

9. Acain, lacking data on casualty estimates and bed avail-

ability, the extent of the redistribution problem is

inknown but presumed to be large.

i0. A mission is the set of flight segments covered by one

-aircraft in one day.S
P .
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11. The C-141B can carry from 107 to 167 patients,

depending upon The amount of special medical equipment

used. The C-9A maximimum load is 44 patients.

12. Of the total tleet of eleven, one or more aircraft may

not be available due to maintenance and other problems.

'3. These factors should be considered assertions to be

verified later in our analysis of patient movement data.

L4. DOD utilizes two different forms of organization. The

,. traditional form assigns responsibility to train and equip

• naval, land and air forces and construct and maintain

facilities to three separate military services. Forces are

actually employed under a mission-oriented scheme, with

components drawn from any of the services, under a single

commander designated by the Joint Chiefs of Staff. Under

the dual organizational arrangement, medical and opera-

tional units assigned to the same administrative organi-

zation might not be employed together under the mission-

oriented scheme.

15. In extenuating circumstances, such as accidents,

soldiers may be treated at civilian hospitals. Military

ihospitals may also contract with nearby civilran hospitals

for services they cannot provide.

6. We did not consult the obvious source, the doctors

themselves. With over 8000 patients moved, this was not
A,1%

N
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practical. Doctor-patient confidentiality restrictions

also ruled against this.

17. Normal bed capacity is the capacity for normal peace-

time use of space.

8. Operating beds are those set up and staffed for care of

a patient.

19. Occupancy rate is the number of operating beds divided

-ntc the average number of daily occupied beds.

20. The Military Airlift Command provides . ther transpor-

-:at~on services that are paid for by users. The Airlift

Services Industrial Fund is a working capital account that

introduces a quasi-market pricing mechanism into DOD trans-

portation planning. MAC charges each user a tariff for

services, and it funds the bulk of its operations with the

revenues. It cannot charge tariffs out of line with other

alternatives available to users, as they have the option of
utilizing a less expensive alternative tc air transpor-

tation. By DOD policy, all patient transfers in excess of

L00 miles must be made by air. [JONE82]

21. Flying time is the elapsed time from takeoff until the

0 aircraft is parked at a destination. It is a ubiquitous

in;t of analysis in Air Force planning commonly considereu

an output, although from a budget standpoint, it represents

the expenditure of inputs.

p.
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22. That price is an average of all forecast fuel purchases

tor one year. Bases that pay actual fuel costs above the

uniform price are subsidized by transfers from bases that

pay less. This scheme ensures that bases do not show

disproportionately higher costs than other bases for their

flying operations. It also virtually prohibits any eco-

nomic fueling strategies bdsed upon price, since it was

designed primarily for non-transient aircraft operations.

Wing policy does direct crews not to purchase from non-Air

F'orce sources, since actual costs, including refueling

charges, ramp fees, and profit, must be paid.

23. ordinarily, the route covered by one aircraft in one

day constitutes a mission. Exceptions include instances

where an emergency requires an aircraft to be used for a

second mission, or when an aircraft maintenance problem

requires a second aircraft to complete the mission.

24. As an example, a patient with a severe pulmonary prob-

Sem may require a constant aircraft cabin air pressure that

can only be maintained at low flight altitude. It is the

* increased fuel consumption at that altitude, and not the

medical condition of the patient, that may .moose a route

length restriction in the routing problem.

25. A patient's records show only his enplaning and

v.. deplaning airports. We could not alway- ietrrmine ccnclu-

, sively the aircraft route, particularly when the route

* transited the same airport more than once.
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CHAPTER III

MODELS FOR DOD DOMESTIC AEROMEDICAL TRANSPORTATION

PLANNING

For euery problem there is one solution that is smtple, neat. and
Lrorg. H.L. Mencken

, 1. introduction. In the last chapter we observed that tim:

51)11iCy to serve patients was limited primarily by -,he

j ccarv of two resources, aircraft and crews. Fixed ai:-

-.:r aft fleet size, the desire to use the limited life -;f

-ach aircraft sparingly to preserve wartime capability, and

-: aintenance policies dictate the number of air--

craft available each day, which governs the number of

routes that can be flown. Safety and patient concerns

limit ight and medical crew duty time and the number o,

s o ps allowed in a duty period, which restricts the number

Jit segmnents in and duration of each route. As a result, on

nost :eekdays, the number of patient origins and destina-

torns exceeds the maximum total stops allowable.

Aeromedical transportation planning, then, involvea

more than daily aircraft routing and crew scheduling; i-

must also resolve the imbalance between movement demand and

resource availability through an appropriate allocation or

resources over longer time periods. And, perhaps mo>

importantly, the planning process must take place withiri

the Lnstitutional context and operating environment

described in the last chapter.

%%"
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'Lhe objective of this chapter is to propose a design

>r a planning system that will help planners and decision

makers resolve these problems. We begin by outlining an

anroach that will examine a series of increasingly diffi-

cult aeromedical decision problems that unfold from the

relatively simple problem of finding daily routes into The

very difficult problem of resolving imbalances between

patient movement demand and resource availability while

observing significant operating restrictions. We then

discuss the particular methodology to be used, a variant of

linear programming that explicitly reveals how resource use

and client service are coordinated and controlled as the

planning model finds improved planning solutions. The

chapter concludes with a proposed resource-directive EP

model, and a review of related models ii the literature.

3.2 Appoach. In our discussion of planning systems in the

A %ast chapter, we described how Mason classified plannino:

3ystems by the design of their information and decisicn-

* making subsystems. That scheme creates an interestJir, q

diL'emna: which of the two subsystems do we design firs..-

Simon observes that in the past the design process

most often began with asking what could be done
with the information that was already there, not
,,Lth asking what decisions were being made, and
what information would be helpful in making them.

:.5 (SIMO77,p. 126]

0 .

.5.
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-.n many instances, information systems designs were

I basec on an historic or combination user/historic model.

LAIMER72,p.319] Designers asked decision makers what data

they used; where it originated and how it was being cap-

tured, processed, communicated, retained and transformed

-d nto information for decision. But, as Mason points out,

All too frequently, however, the approach used by
designers has been limited to a study of existing
forms, files, reports and procedures and an effort
to determine ways in which they might be
simplified, expanded, integrated and improved.
Sometimes many useful and economical results are
realized from this kind of study; but, they are
generally in the area of increased efficiency of
data flows or reduction in clerical staff, not in
improved quality of decisions made. [MASO75,p. 3]

Ackoff (ACK0671 argues that using the approach can have

far more serious consequences. When designers ask managers

vwhat information they need, they assume (1) managers fully

understand the types of decisions they make and have

*. adequate models of each type, and (2), they really want the

data they claim to need to make those decisions. [ACKO67]

* Aitnugh it is unlikely that both conditions are always

satisfied completely, managers probably have adequate

conceptions of at least some of the decisions they make,
and their demands for data may adequately support their

needs. But the critical problem is this: Less than full

understanding of the nature of the decision problem causes

managers to consider more ariables and hence ask for

"everything." The designer, even less familiar with the
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manager's decisions, incorporates even more variables,

generating more than "everything."

The resulting system typically deluges the manager with

an "overabundance of irrelevant data," [ACKO67, p.148] and

fails to perform the two most important functions of an

information system, data filtering and condensing:

The designers of thelse] system[s] had not learned
the first lesson of living in an information-rich
world: that a major task of an efffective
information system is to filter information, not to
proliferate it. [SIM077,p.2941

r0 The vast literature on information systems is a litany to

Sother shortcomings of the user/historic approach. Because

one of the most common data sources managers rely on is an

-accounting system, many systems are predominantly

. transactions-oriented, in the accounting sense that, if

something measurable does not happen, the system does not

record it. Such systems react passively to the environment

because they do not "know" anything until and unless an

- event has taken place and the fact recorded, rather than

actively attempting to forecast and anticipate significant

environmental conditions. The approach also usually fails

to record a suitable history cf resource use, including

lost opportunities, because no audit trail is kept of

.4 planned events that did not actually occur. [CHUR67] This

is a problem we noted earlier in the current aeromedical

information system.

W. .. .. * . - ' _ ..
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Also, uising the current organization as a model avoids

preciudes considering better alternatives. And, the

7.'nme delay between finalizing the design and implementing

--e information system induces rigidity in organizational

3sructure and functioning by preservinq outmoded practices

,and procedures. [HEDB76] Finally, basing a design on the

rreferences of current participants and their practices

.fien produces systems that are incompatible with different

,:ser psychological types and other managerial styles.
* >ASO73j :n Wildavsky's view, the approach has not merely

s:aled, it has never suceeded. [WILD75,WILD76]

The inderlying problem, Ackoff suggests, is that:

./ One cannot specify what information is required for
.1 decision making until an explanatory model of the

decision process and the system involved has been
constructed and tested. [ACKO67,p.150]

Mason [MASO75,p.2] agrees; of two approaches to planning

.system design, studying and refining data flows, versus

analyzing management decision problems and conceptualizing

ant. modeling their essential elements, the latter is better

suited for planning system development. Designers should

first determine what decisions must be made and how, by

means of a model with the components of the decision

crocess shown in Figure 2.1. Then, the parameters and

iariables In the decision model serve to specify what data

is required, where it originates, and how it should

A



214

captured, processed, distributed, and retained; and how it

can be most usefully transformed into information for

decisionmaking. We state as a major premise of this paper

that formulating a decision model first is fundamental to

planning systems design.

The major methodological problem, then, is to decide

how to construct a decision model for DOD aeromedical

transportation planning. The aeromedical problem as we

described it in the last chapter includes a large number of

potential decision problems. We are primarily interested

here in solving routing-related problems, finding sequences

of visits to all patient service points, subject to

constraints on resource availability and operating limi-

tations, that maximize or minimize some objective

measure(s) of performance.

Bodin and Golden [BODI81] provide a very useful way to

categorize transportation problems according to the set of

characteristics common to most problems they have analyzed

(Table 3.1). Essential aeromed problem characteristics

discussed in Chapter II are denoted in Table 3.1 with aste-

risks. By varying our assumptions, we create a series of

increasingly more complex models in terms of these charac-

teristics (Table 3.2).

* -J
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TABLE 3.1

AEROMEDICAL TRANSPORTATION PROBLEM CHARACTERISTICS

Characteristic Possibilities

. ,6 A. Number of depots 1. One depot
*2. More than onp Aepot

3. Fleet size 1. One aircraft
a" *2. More than one aircraft

C. Type of fleet *1. Homogeneous aircraft
2. Heterogeneous aircraft

D. Nature of demands *1. Deterministic
2. Stochastic
3. Static

*4. Dynamic

SE, Demand location *1. At nodes
2. On arcs
3. Mixed

F. Underlying network 1. Undirected
*2. Directed
3. Mixed

G. Aircraft capacity *1. Imposed-identical aircraft
limits 2. Imposed-not all the same

3. Not imposed

H. Maximum route times *1. Imposed-identical limits
2. Imposed-not all the same

3. Not imposed

. Costs *1. Variable routing costs
2. Fixed operating and/or

acquisition costs
3. Variable and fixed costs

J. Service operations 1. Pickup only
2. Delivery only

0 *3. Mixed

K. Service stipulations 1. Serve all customers
*2. Service deferment or

partial service allowed
M. Problem-dependent

0 constraints

Source: [BODI8I,p.983

oiv
V"
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Version i is the single aircraft routing problem, in

which the object is to find the route or routes that pro-

. vide complete service to a set of customers. The essential

feature of patients having both origins and destinations is

introduced in Version II. This changes the problem from

one that is essentially the classic traveling salesman

problem to one that is considerably more difficult and

requires a new algorithm to solve. In addition to finding

a route initially, the procedure can also be used to

quickly revise the routing if new stops must be added or

previously included stops changed or deleted. These situa-

tions occur frequently, for example, when missions in pro-

gress must be revised to handle urgent cases. Chapter IV

will discuss the first two versions.

Version III introduces the problems of designing routes

for a fleet of aircraft and operating from multiple depots.

(A depot is the more generic term in the literature for

what were earlier called aeromedical staging facilities).-A

• In Version IV, we introduce the complications caused by

shortages of aircraft and crews, the effects of geographic

regionalization, and the need to cycle aircraft through the

• central base periodically. Versions III and IV will be

covered in Chapters V and VI respectively. Note that

characteristics C, F, and G will remain constant in each of

the model versions.
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TABLE 3.2

AEROMEDICAL PLANNING MODEL DEVELOPMENT

Version Characteristics

A(l) One depot
B(1) One aircraft
D(1),(3) Deterministic, static demand
E(l) Demand located at nodes

I F(2) Directed network
G(3) No aircraft capacity limit
H(3) No route limit imposed
1(l) Variable routing costs
J(2) Delivery only (no precedence)
K(l) Service all clients

Same as Version I except:
II J(3) Mixed service operations

* (precedence relationships present)

Same as Version II except:
HI A(2) More than one depot

B(2), C(l) More than one (identical) aircraft

Same as Version III except:
D(4) Dynamic demand
H(l) Maximum route limits (time)

IV K(2) Service deferral and partial

service allowed
M Problem-dependent constraints:

Originating and final depot for each
[ route are decision variables

in the following section, we will introduce the linear

programming methodology we will use in the planning model.

We will emphasize the properties of the LP model that will

allow us to model time periods (e.g., days of the week) and

regional organization, and decompose very large problems

using the resource-directive LP decomposition technique

that explicitly models the initial assignment and iterative

reallocation of resources to better serve patients.
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3.3 Methodology. Many organizational planning problems can

be usefully represented as a mathematical program:

(R) Find x,, k=l,2,...,K, in order to

K

Maximize Z = f 1 (-" 11) (3.1)
k=1

'1 K

Sub iect to: ' g(x) -5b (3.2)
k=I

2 E Xk k=1.2,..., K (3.3)

0

where:

2 k (k=l,2,...,K) is a vector of activity
levels with dimension nk,

fk(Xk) (k=l,2,...,K) is a real, scalar-valued
function with argument xk'

gk (2 ) is a real, vector-valued function asso-
ciating resource utilization with
activity level xk'

b is a vector of resources available to
the organization with dimension m, and

Xk is the feasible region to which allow-
able vectors xk are constrained.

* The use of a singular, scalar-valued, multiple argument

objective function, f(x), is very common in the literature.

The constraints, g(x), are interpreted to be the organi-

* zation's technology, its environmental restrictions, and

other goals and stipulations not specified in the objec-

tive. Shown as inequalities, equations (3.2) have as their

right hand side the resources available to the production

A.&
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process. These may also be interpreted as production tar-

gets or resource budgets. [CHAR61,HAAS68] Since a system

of linear inequalities of the type shown in (3.2) cannot be

solved directly, linear equalities must be created by

adding slack variables, which measure the extent of

resource underutilization or the underachievement of tar-

gets. [CYER63,pp.36-38] In the case of greater-than-or-

equal-to constraints, surplus variables are used to create

equalities that can measure overachievement and utilization

of resources above some stipulated minimum. To both

* greater-than and equality constraints, artificial variables

must be added that have no economic interpretation, in

order to obtain initial solutions. in addition to the non-

negativity constraint often imposed on the decision vari-

ables, x may be required to be continuous, or integer, or

even both over different stipulated domains.

In the following discussion, we assume that functions

(3.1)-(3.2) are linear, such that (R) becomes:

(9 ') Find xk k=l,2,...,K, in order to

K

Maximize Z C -" k ( 3.4)

k I

(3.5)

j I. - . (O3.6 )
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If constraint (3.6) is not present, (R') is often

called the canonical primal form of a linear program (LP),

which we discussed in the last chapter. Methods for

solving (R') when the xk are continous are widely known.

In our planning model, decision variables which represent

the decision to travel between two points must be integer.

Ordinarily, an integer linear program (ILP) of even mode-

rate size cannot be solved. However, some ILP problems can

be solved because of special structural properties. Our

formulations of Versions I and II of the aeromedical plan-

* ning model, for example, are an extension of one ILP spec-

ial case of (R') commonly called the assignment model.

This allows us to use special techniques that solve the

assignment problem efficiently, within a branch and bound q

framework that can handle additional constraints.

When constraint (3.6) is present, (R') is a linear pro-

* gram with block angular structure, in which the non-zero

'N- coefficients in the constraints are clustered in sub-

matrices along the diagonal of the constraint matrix. Con-

.4 straints of this type can occur when portions of an overall

problem are nearly separable. In an organizational con-

text, this might be due to geographic, temporal or func-

tional specialization, or a combination of these. An

extensive literature discusses models of the type shown in

Figure 3.1(a), where the near separability of divisional

problems creates a decentralized structure. Block

41-
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x 1 * 0 * i Objective
Cl 2'2 __________I____--__ Function

A2i22i2A 'K b Corporate
IAx* " AK'X 1 b- Resources

d Divisional

B2 2 ] -2 Resources

[0
i0

BK'x K  4K

q7% Figure 3.1(a). A two-level, decentralized organization.

c2,i2 C3IX3 C4,X4 Objective.I -- -- [ --~3 Function

A A b Corporate
1.A '2E A2'2i 2  A3X 3  A4'2i 4  __ Resources

Intermediate
H 1'X H 2'22 Headquarters

Resources

di ,Divisional

B2,i2 d2  ResourcesS h
H 31 3  H4 x?4  - 2

•B
4 'E 4

Figure 3.1(b). A three-level, decentralized organization.

Figure 3.1. LP-based models of multi-level, decentralized
organizations.
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angularity can also be present within each major block,

Bkxk, as in Figure 3.1(b). (R') can be interpreted as a

model of resource allocation in a multi-level organization.

Figure 3.1(b), for example, could represent a three-level

aeromedical organization with a central management at the

(wing) headquarters, geographic regional divisions, and

patient transportation administrators located at the med-

ical treatment facilities in each region. The objective

(3.4) might be to minimize patient enroute delays, subject

to two types of constraints: organization-wide limits (3.5)

on resources required by more than one region, such as air-

craft and aircrews, and regional resource limits (3.6) such

as the maximum number of staging facility beds available.

Resource vectors b and dk are commonly referred to as

global and divisional resources respectively.

An organizational LP model with block angular structure

implies assumptions besides those discussed in Chapter 2.

- i. The linear objective implies that the organ-
ization is cooperative. [FREE73] That is,
although lower levels may compete for global
resources, their objective attainments are
additive. The model is not restricted to sin-
gle objectives; Kornbluth [KORN74] discusses
the multiple objective LP case.

2. Divisional resources are not transferable, or

at least such transfers are not considered part

* of the allocation problem. 1

3. The divisional problems are assumed to be inde-
pendent, in that only activity levels xk enter
as arguments in gk (i.e., the blocks Akxk and
Bkxk); there are no externalities.

2

4..
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* The problem of optimal resource allocation is usually

not static, in the sense that maximal contribution from

available resources is usually achieved over time. As we

will show in Chapter 6, the daily demand for patient move-

ment can exceed system capability, such that the time

period (day or days) in which service is provided is part

. of the service decision. This situation requires the

following version of (R'):

(MR') Find xk and zk, k=l,2,...,K, in order to

.1
K K

Mta x im iz e Z I 'k = z r " _ x_ ( 3 .7 )

. Ak S,,hj,.ctti --N" A kzk + \ A .'k , -h ( 3.8 )

k=l k=1

F2 V ! (if 1 t , ,J, k 1. l2... K, (3.9)

-I where:

Xijk is the level of an activity i in division j
taking place during period k;

* jk = (Xijk: i=l,2,...,ni), a vector of activity
variables representing all ni activities in
division j during time period k;

, k  (xjk: j=l,2,...,J), matrix of activity
vectors representing all activities in all

* divisions during time period k;

z ijk is the level of an activity i taking place
between periods j and k;

0 *z jk  (Zijk:i=l,2,...,mi), a vector of all activ-

ities between time periods j and k;

OS
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k = (.jk: j=1,2,. ..,J), matrix of activity
k vectors representing all activities between

period k and all other time periods;

2jk = (Cijk: i=l,2,...,ni), a vector of contri-
butions derived from all activities in
division j during time period k;

2k = (Cjk: j=l,2,...,J), matrix of all division
j contribution vectors for time period k;

b = (b1,b2,..., bK), a vector of resources

available to the organization during each
time period;

Aij = (aijk:i=,2,...,n), a vector of the amount
of global resources used by division j

during time period k;

Ak = (Aij: j=l,2,...,J), a matrix of global

resource useage vectors for all divisions
during time period k;

. Ejk = ( :i=l,2...ni), a matrix of divisional

resource usage coefficients for activities

of division j during time period k; V

Fjk = (fijk:i=l, 2,.. .n 1 ), a matrix of resource

usage coefficients for all activities of all
divisions between time periods j and k;

4jk = a vector of resources available only to
division j during each time period k;

X is the feasible region of xjk' i.e., the set

to which allowable vectors xjk are
* constrained.

Multiple time periods create separate subproblems for each

divisional operation during each time period. Because the

periods may be linked through variables that represent

activities that occur between time periods, a new structure

that includes both coupling constraints and coupling vari-

ables emerges. Coupling constraints are those that contain

SI' '
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restrictions on the ,se ot corporate resources by different

divisions. Couping variables relate entit ;es across time

periods. Where x jk might represent the decision to route

an aircraft between patient service points i and j in time

.oeriod K, zi,, could be the decision to defer picking up a

patient at point i in time period j until time period k.

Objective
31 Function

r CorporateAl'xlzl] I A2 [x 2 ,z 2 1  , A3]'[_ 3 ,x z3] b I

•JL1 1 A I - Resources

E x_  d I Divisional
dI 2 Resources

12 2i2 d 1

IE 2 2  ~-22
-2 E 1 3 3  13

-13

Figure 3.2. A three-period, two-divisional, decentralized
structure.

Coupling variables create the structure shown in Figure

3.2. :n addition to linking constraints containing limits

on corporate resources, the rows of the divisional problems

are now linked by variables that relate divisional opera-

tions across time periods. As Hillier and Lieberman

HILL8Li nave shown in multidivisional, multiperiod models,

reorderinq the linking variables by moving the coupling

variable columns to the left creates a dual anqular

ai -" "
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A. structure in the divisional constraints, which is in turn

the subproblem of a larger primal block angular problem

.- < with linking constraints.

3.4 Methods of Decomposing Large Mathematical Problems.

Mathematically, the most interesting aspect of problems

(R') and (MR') is that their structures permit a parti-

tioning, or decomposition, into problems that can be solved

without addressing the entire problem at one time. The

theory of decomposition in mathematical programming is well

developed, and a number of algorithms exist to solve prob-

* lems that have the block angularity characteristic in their

-4 constraints. Algorithms generally use one of two types of

coordinated information exchanges between decomposed sub-

problems, such that they yield the same optimal solution

(if one exists) as would be achieved by solving the origi-

nal problem directly. Although the dichotomy is admittedly

weak,3 the two principal coordination types are price and

resource direction.

V. 3.4.1 Price Direction. Dantzig and Wolfe [DANT61] reported

S4
the first price-directive technique,4 based upon pioneering

work by Koopmans, Kantorovich, Kuhn, Tucker and

Hirschleifer. Baumol and Fabian (BAUM64] first interpreted

- the method in an organizational context. Essentially,
J.

pricing approaches achieve optimal allocations through the

introduction of prices or penalities, issued by the super-

ordinate unit (or "headquarters") for the use of global

02¢

................................... * .-
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resources, n subordina-e unit ("division") objective func-

ions. (The terms Lagrange multipliers, dual variables and

shadow prices are also used synonymously for prices.) In

9 effect, prices impute the cost of the coupling constraints.

The headquarters chooses pricing policies such that optimal

feasibie allocations eventually result. Divisions solve

-neir individual problems in response to each successive

poricing policy and transmit their requests for global

resources to the headquarters for evaluation. Eventually,

--"he headquarters obtains sufficient information to formu-

* late the optimal pricing policy.

To demonstrate the functioning of the Dantzig-Wolfe

,-." model, consider problem (R') above. Define the set

Sk (k Bkxk <- dk, xk 0} (3.10)

.,

as the feasible activities for division k, and assume Sk is

bounded. Let Xke be an extreme point of Sk. Any Xk ESk can

I be written as a convex combination of extreme points:

.5.k

\ (3.11)

0 (3.12)

* \ \9 (3.13)

"9.
9.V

0 I
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We can rewrite (R') as
K E(h .

(P') Maxim ze C X" )v (3.4')
-k -k k

* k=[ eL[

K F(k\

Subject to: " (A k k (
k71 e

1

k

"K V =I Ik~ 2 .,K) (3.6')

t,=

S..

(P') is called the restricted master, headquarters, or

coordinator's problem. The decision variables are the xke.

But, under the information structure assumption [JENN73]

that Xk is not known outside division k, the extreme points
',.

- ke are not initially known to the headquarters. Dantzig-

Wolfe uses supporting hyperplanes (column generation) to

generate the extreme points. The headquarters issues 2

.5.' the shadow prices of (3.5'), where t is the iteration num-

ber. Division k then solves the following subproblem:

. (Pk'(2t)) Maximize (Ck'-]PtAk)Xk (3.14)

Subject to: BkXk < dk (3.15)

Xk 0%J

Let xkt be the optimal solution to Pk'(pt)). Division k

transmits demand vector Akxkt and payoff Ck'xkt to the head-

S.0 quarters; transmitting Xkt is unnecessary. [FREE73,p.65J

If optimality is not reached, 2t+1 is computed by solving

-., (P'), and the process continues. It is well known that p-

t does not yield an extreme point solution for all

S%.

iopt

),V.%*

V~ N4~S.5



- 229

. divisions, and hence, the headquarters must impose the

final solution on each division.

Detailed analyses of the various pricing approaches are

given by Lasdon [LASD70], Geoffrion [GEOF70], Freeland

[FREE73], Atkins [ATKI74], Ruefli [RUEF74], Molina

[MOL177], and Burton and Obel [BURT77]. Freeland derived

the summary of representative algorithms in Table 3.3.

3.4.2 Resource Direction. In contrast to the price-

directive approach, the resource-directive method, first

* proposed by Kornai and Liptak [KORN65,KORN67], partially

reverses the roles of the headquarters and divisions.5 (The

first organizational interpretation is given in [BURT74].)

Observing that the inability to decompose problem (R') into

N independent subproblems is due to the global (or linkage)

resource constraints, they proposed that headquarters iter-

atively allocate shares of resources to the divisions.

With its current share (or tentative budget), each division

solves its local problem and transmits shadow prices (also

Scalled bid prices or marginal values of increased budgets)

on the use and value of the current tentative budget back

to the headquarters. These prices are used to derive a new

* allocation, and the iterative process continues until a

satisfactory near-optimum is reached.6  ten Kate (TEN 72]

developed a two-phased program (essentially the dual of the

* Dantzig-WoLfe method) that is guaranteed to achieve opti-

mality in a finite number of steps.

0'
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Geoffrion [54] derived a commonly used taxonomy of

problem manipulation and solution strategies for resource

budgeting problems. The principal features of the three

main approaches are given in Table 3.4. Computationally

and behaviorally, there is no definitive way to establish

the superiority of one method over another. We have chosen

the tangential approximation approach for further discus-

sion for a number of intuitively appealing reasons:

1. It requires the least amount of communication

between levels.

2. Both the data required (resource shares and
division solutions) and information flows
between headquarters and divisions are what we
might reasonably expect to either currently
find in an organization or implement without
major difficulty.

3. We expect it to perform particularly well when
the feasible regions of divisional problems are
easily described and objective functions well-

. defined.
A.

The following section describes more rigorously the

*1* method of tangential approximation, summarizing the contri-

butions of Geoffrion [GEOF70] and Freeland [FREE73]. The

* reader may only be interested in the general idea, which is

given in the opening paragraph. The reader may then choose

-A to go directly to the next section.

3.5 Resource-Directive Decomposition By Tangential

* Approximation. Essentially, we wish to decompose (R' ) into

a series of subproblems corresponding to these of the indi-

vidual divisions and the headquarters. (The same scheme

0I
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can be reiterated t: more than two levels when the divi-

sions problems are themselves decomposable.) This is

accomplished by creating a problem effectively equivalent

- to (R') using the mathematical techniques of projection (or

partitioning), outer linearization, and relaxation. The

headquarters, or master, problem generates tentative global

resource allocations by approximating the response of each

division to its tentative allocations. These approxi-

mations of optimal response are derived from the marginal

(imputed) values on global and divisional resources

*reported by the divisions following subproblem optimi-

zation. The process terminates at optimality in a finite

number of steps, or at least at a feasible, non-optimal

solution. The creation of a master problem equivalent to

(R') can be accomplished by projecting a two-variable sys-

tem (with variables xk and bk) onto the space of one vari-

* anle (bk). To demonstrate this, suppose our problem is to

Maximize f(x,y) (3.16)
A, xEX;y(Y

Subject to: G(xy) > 0 (3.17)

or graphically as in Figure 3.3. Projecting (3.14) onto

the space of y alone, we have

* Maximize (sup f(x,y) I G(x,y) 0}. (3.18)
yEY xEX

Let v(y) equal the maximand in (3.18). The variable y must

O be in the effective domain V of y; otherwise v(y) is set

equal to -' to indicate infeasibility. Then

WA06XW
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0X

G(x,y) =f 0

A _f - V - -- -- - -

Figure 3.3. Depicting the set V.

Source: (GEOF70,p.l16]

-V V = {y:v(y) = ' f ~y:G(x,y) : 0 for some xEX}, (3.19)

which makes our equivalent problem

maximize v(y). (3.20)
yE YnlV

.4. In our problem, we first introduce a modified con-

straint for (3.5) in (R'):

KAkb (3. 5a')

k=1

K

bk<-lb (3. 5b')

This revision changes (R) from a problem with coupling

constraints to one with _,jping variables. (GEOF70] We

then project (R') onto the space of b, which will

K

Maximize (b )(3.21)
- k

S 11bi Oct to _\_ 6 (3.22)

k
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where

bktBk = p bk Em I Bk xk <- dkAkxk :S b k , for some xkEXk}, (3.23)

and vk (bk) is the optimal response (k*) by division k to

allocation bk. To find such responses we partition (R')

into K subproblems that

R (bk)) Maximize ckxk (3.24)

Subject to: AkXk _ bk (3.25)

BkXk : !k (3.26)

* Xk -0

A key point should be made here. The original problem

(R') was transformed in to (R''). But, we cannot begin to

solve (R' ') directly because we do not know anything

initially about vk(bk). This is the underlying reason for

two modifications. First, before the initial iteration,

the headquarters must be able to find a feasible allocation

for all divisions Past experience may provide it, or else

some technique such as ten Kate's infeasibility form method
0

[TEN 72] (based on the Dantzig-Wolfe Phase I algorithm) can

be used. Secondly, through successive iterations, a series

of approximations to vk(bk) must be developed. The method

of tangential approximation uses outer linearization to

V accomplish this. (See Figure 3.4).

NW
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Vk02k)

I I

T k 0  TTkk

Figure 3.4. Approximating vk(bk).

Assume dual variables fnkt exist for a given bkt. It

can be shown that ikt is a normal to vk(bk) at bkt associ-

ated with the function

2k'k - nkt(bk - bkt) '  (3.27)

the tangent to Vk(bk) at bkt• Therefore, each iteration

provides an improved estimate to (R'') of the optimal

* response function vk. ten Kate's [TEN 72] algorithm

assures reaching optimality by requiring improvement in the

approximation in each iteration.

In effect, then, the idea is for the divisions to pro-

vide the headquarters with imputations of resource values

with which the headquarters can improve allocations and

eventually achieve optimality. (Since the piecewise
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approximation never underestimates vk, a monotonically

decreasing upper bound on the optimal value of (R') is

known. And, since each allocation is feasible, the best

solution based on all previous allocations provides a lower

bound, so that a measure of potential improvement is avail-

able.) Finally, the information requirements are mini-

mized, since the headquarters only has to transmit allo-

cation decisions, and divisions need only report resource

shadow prices that are automatically generated when they

solve their planning problems.

Decentralization has been shown in some models to be at

best only partial. The price-directive method requires

that the final solution be imposed upon the divisions,

since the optimal solution is formed by weighting the divi-

sional solutions. That is because the global optimal will

not necessarily coincide with each divisional optimum.

Jennergren's method [JENN72,JENN73I of using (linear) price

schedules overcomes this problem. But, his divisional

objective functions are quadratic, which increases computa-

tional complexity, and more importantly, only an infinite

number of iterations assures convergence, which causes

implementation problems. Other methods (e.g., the preemp-

tive goal approach of Charnes, Clower and Kortanek

{CHAR67I) resolve price inadequacy, but at the expense of

increased complexity and added information transmission.

0V

0t
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In the resource-directive case, Jennergren [JENN73]

proves that feasibility throughout the solution process is

not assured. To maintain feasibility in eact i.teration,

each division must receive a resource allotment sufficient

to assure existence of a feasible solution. However, for

resource-directive methods, the property that causes

infeasibility to occur (in some iterations) is the allow-

ance of unbounded divisional problems, which is not real-

istic. Further, if successive planning periods are highly

Ssimilar, initial starting strategies based on previous

experience should ensure initial feasibility. However, no

clearly superior initiation strategy under resource-

direction has been reported. [BURT77,p.403]

A potentially serious computational problem arises in

resource direction due to degeneracy. Freeland and Moore

[FREE73,p.1053] define global resources required by every

subordinate unit fully competitive. If, for decomposable

linear programs that possess a feasible and a unique,

bounded and non-degenerate optimal solution, 7 at least two

divisions, and at least one global resource, 8 then:

1. All resource-directive decompositions are
degenerate at optimality, i.e., partitioning
global resources induces at least one degen-

* erate optimal divisional solution.

ON 2. At least g(n-l) basic variables are zero, where
\S g and n are the numbers of global resources and

divisions respectively.
9

S

'.S2
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3. only one divisional optimal solution may be
non-degenerate, which implies that no more than
one optimal bid vector is unique.

4. At optimality, the optimal bid vector is not,
L=for all divisions, an extreme point of the set
of all optimal vectors. [FREE77,p.1056]

Although ten Kate [FREE77,p.10531 proved that at least

one common bid price vector for all divisions exists at

optimality, degeneracy in a divisional optimal means that

its set of vectors is not a singleton.'0  Therefore, there

.s some chance that optimality will not be achieved,

particularly when all divisional problems are degenerate.

The Kornai-Liptak model won't recognize optimality if the

initial allocation is optimal and divisional problems are

degenerate. If degeneracy elimination techniques are used

-(e.g., perturbation), equality of bids will not result.

Assuming non-degeneracy (as Burton et al do [BURT74,p.303])

unrealistically avoids the issue. If the regularity condi-

tion tnat no alternative global optima exist is removed,

then non-degeneracy may result. [FREE77,p.1054ff.]

% he important implication is this. Using the well-

• known principle that "adjustments should be inade until a

resource yields equal marginal return in all uses,"

.BURT77,p.4021 the headquarters' attempt "to find an opti-

* mal allocation is almost surely doomed to failure."

[FREE77,p.iS1 More sophisticated algorithms can lessen the

problems of degeneracy, but as Freeland and Moore [FREE77]

point out, such algorithmic modifications add complexity

and have no direct organizational analog.
1

a-'
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3.5.3 A Computational Example of Resource Direction. To

demonstrate the resource-directive decomposition method,

consider the following linear program:

Maximize Z Xi1 + 2x 1 2  + x21

Subject to: x1i + X 1 2 + X13 + X 2 1 + X22 10

4xll + 2x 12  + 3x 1 3  _ 10

xll + 3x 1 2 + 2x 1 3  < 10
Xl13  --

X21 + X2 2 < 15

2x2 1 - X2 2 <_ 20
2X2 1 - X22 10

xij >: 0, i=1,2, j=1,3.

The block angular structure, with one coupling constraint

for one global resource and two divisional problems, should

be apparent. To obtain a resource direction solution, two

types of linear programs must be formulated. One is the

problem each division solves. For example, division 1 will

Maximize 0 1k = xll + 2x1 2

Subject to: xil + X12 + X13 bl (U k

4x11  + 2x12 + 3x 1 3 < 10 (V )

.. I + 3x 12  + 2x 1 3  10 (V 2k )

Sx3 5 (V 3 k)

x > 0, i=l,2, j=l,3.

-.. Division 2 solves an analagous problem. The Uik and Vik

* are dual variables for the global and divisional resources

during iteration k. The amount of global resource i allo-
cated to division j is denoted biJ. The amount is deter-

* mined by the master (or coordinating) problem. Each
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then reports tne values of the dual variables, U for

each global resource i allocated to division j during iter-

ation k, and the the imputed value of its m divisional

-resources, - d= dVV + ... * d during iter&-ion k.

his is all the information required by the master problem

to coordinate the solution process.

TD begin the solution process, we need an initial allo-

cation of resources. Earlier, we said this can be done

mathematically. We can also use our knowledge of solutions

that yielded reasonable results in -he past. Lacking any

- < other alternative we can divide shares equally.

Suppose we allocate equal shares of 5 units to both

di",iSions. Divisional solutions are 0 = 7 and 0 5,

-muted divisional resource values of (1 : 7 and 2 0'
-i r a nd U I21

and global resource shadow prices U 1 an = 1

resectively. Combined objective achievement is 12; divi-

sion 2 did not fully utilize any divisional resource but

used all of its global allocation, and just the reverse

occujrred in division 1.

When the headquarters receives the divisional shadow

price information, it can then solve the following problem:

• Maximize +

Sibject to: -'f b+ k
-U k b  2 < 1, k

"-[12 1 2

b L + bl 2  <i_ 0

KI,2,..... t-I.
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As the notation implies, the master problem adds one row

fnr each division after each iteration. (For that reason a

dual simplex solution method is often used.) The objec-

7 tive, o,+n,, is a monotonically decreasing upper bound on

".'- total objective achievement. The first solution revises

the allocations to b1 l = 0 and b1
2 = 10 primarily because

- , the global shadow price reported by division 1 for the

1initial allocation was zero. With this new allocation, the

two divisional problems are solved, yielding only one

change: U1 2 = 2. Two constraints are added to the master

problem, the solution (oao,bl1 ,b1
2 ) = (7,17/2,3/2,17/2) is

found, and these new allocations are transmitted to the

divisions. Eventually, the headquarters receives the same

price vectors in succession, indicating the last allocation

was optimal. The global optimal, (xll ,X1 2 ,x13 ,x2 1 ,x2 2*)

=(0,10/3,0,20/3,0), requires an optimal allocation of

(b1l,b,
2 )* = (10/3,20/3). Progress toward optimality in the

first iterations is evident in this example, as is a sub-

A stantial fluctuation in allocations, although neither of

these conditions is always present.

This example illustrates the principal value of the

resource-directive method: resources are distributed in a

series of trial allocations until one is found that puts

them to best use. During that process, each division finds

%the best solution to its own problem that it can achieve

* with the allocation it receives for each iteration.

I--.,

% % -

A '0
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3.6 A Resource-Directive Decomposition Approach to DOD

Domestic Aeromedical Planning. There are a number of prop-

crties of the resour,-e-directive method that appear partic-

ularly germaine to the design and development of an aero-

medical systems planning model. First, it allows a large

oroblem to be broken down into smaller and more tractable

oarts, perhaps allowing even greater detail to be included

i., the subproblems. In principle, we could represent the

.nterests of individual patients or small groups of them

with, say, an origin or origin and destination in common.

* Secondly, we can directly observe the simultaneous, whole

system effects of changing resource allocations on service

to groups or individuals represented in the subproblems.

And thirdly, these allocations can be made so as to achieve

improvement on a coordinated basis, where the attentions of

various corporate entities (headquarters, divisions, etc.)

can be directed toward parts of the planning problem with-

out jeopardizing the interests of the whole system.

,1' This section addresses three design issues. First, we

outline the salient features we ought to include in the
5"

model. Secondly, we discuss the literature that is rele-

vant to this problem. As we will show, no model previously

.eported coincides exactly with the model we ought to

Sesign. And because of that, we will conclude with a plan

of attack for developing the series of model versions

discussed earlier that Lncorporate those features.

5. L
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3.6.1 Aeromedical Planning Model Specifications. Before we

4i begin model construction, we first need to specify what we

want it to accomplish. This includes not only character-

izing the model components (objective functions, con-

straints, decision variables, etc.), but also the partic-

ular decision roles and functions we are trying to support.

Our purpose in doing this, in addition to making imple-

mentation our foremost concern, is to establish a framework

with which we can evaluate similar models in the liter-

ature, as we will do in the next section.

0 There are three major types of plans for which the

aeromedical organization needs a model to provide support

in making decisions. The first, which we call a daily

routing plan, is to determine the best routes to visit a

given set of patient origins and destinations and the

staging facilities. By given we mean that through some

means, the particular patients who will be transferred have

been selected. We assume that the beginning and ending

points of each route (or mission) are qiven by another

S plan, that we call the routing design. These end points

. are obviously important to the missions, but they should be

chosen so that the best level of service is provided over

0
as many time periods as possible. In analyzing patient

flows, we observed that the flow patterns were quite simi-

Lar between calendar weeks, so we have used a week as the

planning horizon for routing design.
E,... *.

WON

W, -V. V .~%.~ &
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The third type of plan is for the movement of each

individual patient. Those involved in developing a plan

include the patient, the patient's physician, the origi-

nating medical facility administrator who authenticates the

transfer, the ASMRO regulator who validates the transfer,

and, at the destination hospital, the physician who accepts

the referral, and the administrator who determines his

facility's capacity and clinical capabilities to accept

referrals. As we demonstrated earlier, one individual

patient movement plan can significantly affect other

* patient movements. The capability to alter individual

movement plans will not be included in the model, but

should be addressed in future research. However, the final

version of the model will indicate the impact of altering

destination choices on the daily routing plan, information

which could be used by regulation decision makers.

41 In developing these plans, the model should observe the

restrictions discussed in the last chapter in achieving the

best possible measure of performance in terms of client

service. To formulate these constraints and objectives

mathematically, individual resources (aircraft, crews,

* budget, etc.) can be combined to form a single resource

unit in terms of which all of the most important restric-

tions we discussed in the section on system environment can

be expressed. These units are route segments connecting

staging facility bases and patient service points.

! ° I
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The general planning problem, then is to allocate these

resources to achieve their best use in serving the system's

clients. Based upon our discusion of performance measures,

we presume that patients are best served if we

I. System Objectives:

A. Minimize pickup and enroute delays, and
B. Minimize enroute travel time.

In achieving these objectives, the model should

II. Constraints:

A. Patient service:

1. Not exceed the maximum time before pickup
* allowed by DOD rules;

2. Not exceed a stipulated maximum time in
the system, from the time a patient is
reported for movement until delivered to
final destination;

3. Allow enroute overnight stops only at
depots (aeromedical staging facilities);

Wk B. Routing feasibility:

1. Begin and end aircraft routes only at the
* depots;

2. Observe pickup/delivery ordering;
3. Not assign more than a stipulated

maximum number of segments to a route;

C. Operating restrictions

* 1. Observe maximum aircraft range and

capacity;
2. Restrict maximum trip length (consecutive

missions before returning to the
central base).

Before we begin to mathematically formulate these

constraints and restrictions, we will first review similar

models reported in the literature to see how others have

incorporated them in their models.

-0 , e
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3.6.2 Literature Review. To meet our needs exactly, a model

would have to address or incorporate the following aspects

or concerns. First, this is a public sector problem, so

the measures of performance would have to be different from

private sector objectives, such as maximizing profit, and

instead focus on the legitimate concerns of clients who

benefit from a service provided by a public sector organ-

ization. Secondly, our principal focus is on medical

transportation, so the considerable volume of work on

moving commodities whose survival or comfort is not in

* question may not not relevant. The special features of the

A. problem, the regional demand structure, the need to pro-

vide the service over a time horizon, and the teed to

preserve the identities and needs of each patient (at least

in terms of discrete origins and destinations) must be

included. And fourthly, a model should show explicitly the

relationship between client service and the allocation of

-. resource units.

0 In short, no model previously reported has the

capability to handle the aeromedical problem exactly as we

have described it. The literature on decomposition tech-

niques, which is very extensive, is a case in point.

Narrowing our focus to resource direction techniques used

in public sector applications, a number of allocation

-" nechanisms employing resource budgeting have been reported,

as Table 3.5 shows.

J0
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TABLE 3.5

PUBLIC SECTOR APPLICATIONS OF RESOURCE BUDGETING

Author(s)
(Year) (Source] Application

Kornai and Liptak Central planning in a socialist
(1965) [KORN65] economy
Malinvaud Central planning in a non-socialist
(1967) [MALI67] economy
Wietzman Central economic planning
(1970) [WIET70]
Cassidy, Kirby US Federal government revenue sharing
and Raike with states and cities
(1971) [CASS71]
Ruefli US Department of Defense Programming-
(1971) [REUF71] Planning-Budgeting System (PPBS)

Crecine US Department of Defense Budgeting
(1970) [CREC70]
Obel and Regional model of Danish agriculture

* Christensen
(1976) [BURT77]

None of these involve transportation. In fact, trans-

portation applications of decomposition techniques are not

common. In reviewing the literature for applications simi-

lar to the aeromedical problem, we could not find a single

reference to a transportation model with geographical

structure, multiple time periods, and multiple commodity

* movement, in a resource-directive decomposition framework.

We did find three applications that were sufficiently simi-

lar to the aeromedical problem to warrant further investi-

* gation. The first features vehicle routing over time, the

second a geographic regional organization requiring coordi-

nated solutions, and the third multiple commodities moved

in an air transportation network.
'S
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Agin and Cullen [AGIN75] developed a model for the

purpose of modeling large-scale military deployments

involving multiple commodities, multiple modes (multiple

vehicles of different types) over multiple time periods.

The purpose of their TRAVEL model was to determine, for

each planning period, what routes each vehicle would take

and what commodities would be moved by each of the routed

vehicles, in order to minimize the cost of holding commo-

dities at non-demand points and shortages at demand points.

The network of allowable vehicle routes, route capacities,

e- commodity availability and latest delivery times; and the

number, location, and capacities of all vehicles are all

assumed given. Commodities can be transshiped, and vehi-

cles can carry different commodities simultaneously.

The TRAVEL model is solved by using a heuristic variant

of the Dantzig-Wolfe price-directive technique called

reflection programming, in which only one subproblem

appears in the extremal problem at a time. The routings

and loadings of each vehicle are iteratively improved until

no further improvements can be found. Optimal solutions

are possible, but not assured. The reflection programming
1%

* technique has never been formally reported, so we could not

d- evaluate it further. We do incorporate a number of

-- ~ constraints in our model similar to those in the TRAVEL

model.

0
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Among early efforts, the decentralized transshipment

model formulated and solved by Ruefli [RUEF71J is perhaps

most notable for its explicit treatment of organizational

structure. Although as Davis [DAVI75] observes, Reufli's

model can be viewed as a relatively simple extension of

Dantzig's transshipment model [DANT63], Ruefli's purpose is

to examine the possibility of representing organizational

structures, such as the regions of a geographically large

transportation network, that are controlled by separate

N decision makers working for a central manager. Davis

extended Ruefli's model to the three levels shown in Figure

3.5.

Central
Headquarters

-Regional Regional. Regional

Manager 1 managerManager

Medical edical

Facilities Facilities Facilities
in Region 1 in Region k in Region M

0 Transshipment Network

Figure 3.5. Ruefli's transshipment model.

Source: [DAVI75]
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In Ruefli's model, the demand at each node is given,

but both the supply at each node and the amounts trans-

ferred between geographic regions are decision variables in

the central headquarters problem. His model is very flex-

ible in terms of the costs or penalties that can be

-S attached to interregional commodity exchanges. Once the

amounts to be exchanged between regions (which are referred

to as imports and exports) and the supplies are decided,

the regional subproblems are solved for the minimum cost

distribution plans. By reporting shadow price information

to the central headquarters, the regions receive revised

allocations of supplies and new import/export levels that

improve whole system improvement (though individual

regional achievement may decrease in some cases), until

this coordination process reaches optimality. The process

require3 no communication between regions, and the solution

,of regional problems can be accomplished by the regional

managers without central headquarters intervention. This

is the concept of decentralization that Ruefli intends when

he refers to this as decentralized transshipment.

Ruefli utilizes a single-commodity flow network with

ffixed node-arc structure. The actual means of flow distri-

oution, i.e., the vehicles and their routes, are not

explicitly modeled. To our knowledge, no one has reported

* a decentralized regional transshipment model incorporating

"? the problem of feasible vehicle routing.
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Kennington [KENN78] provides a state-of-the-art survey

of the results of using linear multiple commodity network

flow (MCNF) algorithms in distribution, routing and vehicle

scheduling applications. The essence of these problems is

to move distinct commodities from one or more supply points

to one or more demand points over a fixed network with

transshipment points, arc capacities, and flow conservation

restrictions. Time periods can be explicitly included by

replicating nodes in each period. He discusses three major

A solution techniques, including resource direction.

* The basic idea of the resource-directive approach to

MCNF problems is to distribute the limited capacity of arcs
b.I.

in a (fixed) network among the various commodities. To

accomplish this, the K-commodity problem is decomposed into

K single-commodity problems for which there are efficient

solution techniques. Feasibility is insured by restricting

the sum of the capacities of an arc over all commodities to

be less than or equal to the arc's capacity in the original

problem. Allocations are revised in each iteration on the

* basis of pricing information provided by the K sub-problem

solutions, so that the process monotonically improves

global objective achievement until optimality is reached.

Ali and Kennington (ALI 81] have successfully applied

the MCNF approach to an air transportation problem in which

distinct cargos must be shipped between 60 bases in the US.

"O
0?i
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Given the demands (in pounds) for each origin-destination

base pair and the distances (in miles) between them, they

first solve a MCNF problem in which the flow not only

satisfies all demands at minimal cost (in pound-miles), but

also occurs over collections of arcs that form circuits.

These circuits represent nominal aircraft routes, but

because aircraft capacity and other operating restrictions

may be violated, these nominal routes are used to construct

a set of feasible routes. A specialized form of MCNF, a

muiitcommodity fixed charge network model is used to select

~ the optimal set of routes that that will guarantee that all

demands and all aircraft operating restrictions are met.

Ali and Kennington employed a partitioning technique to

solve the air cargo problem. Kennington is currently

developing a resource-directive code for the MCNF problem,

but he has not reported it formally. The resource-

directive code is expected to overcome the size limitations

experienced with the special primal basis partitioning code

. used in the air cargo model, which is nonetheless very

efficient for small problems.

The MCNF applications by Ali and Kennington are all

* single period models. They do not incorporate explicit

organizational structures. The air cargo model does employ
--ultiple vehicles, and requires them (the aircraft) to

* 5o1il.w circuits that return them to their "home stations".
V .-5
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Swoveland [SWOV71] used an MCNF formulation and a

resource-directive solution technique to solve a multi-

commodity, multi-period distribution problem. He assumed a

fixed network to model a production-inventory-distribution

problem over several time periods. His solution times were

. disappointing when compared with price-directive methods,

but Kennington [KENN78] attributes this to the choice of

techniques used to construct his resource-directive algo-

rithm. Swoveland's model does include multiple time

periods, which he models by creating replicates of nodes in

eact period, and he maintains the production, inventory and

distribution functions as separate subnetworks within the

overall network. His model does allow multiple commod-

ities, but it does not consider vehicle routing as part of

the distribution problem.

3.6.3 Approach. Since none of these models incorporates

all of the objectives and constraints specified in the last

section, it was apparent that a new model was needed. In

the following chapters, we will follow the outline given in

Table 3.2 to develop four versions of the model. We will

>first examine the most fundamental aeromedical transpor-

tation problem, routing a single aircraft through a set of

patient service points. This first model assumes we must

serve all patients and that we have no resource restric-

tions. The model will be formulated as a variant of a

classic integer linear program called the travelinq29I
pI."
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salesman problem (TSP), with additional constraints added

insure that routes visit patient destinations only after

visiting their origins. The solution method uses a brancn-

and-bound technique and employs a number of recently

develooed devices to increase computational efficiency. We

'will then extend the single aircraft model to include mult-

Lole depots and multiple aircraft. The extension is rela-

-ively straightforward.

The complexity of the problem increases greatly when we

attempt to include additional problem characteristics, such

as allowing partial patient service in one time period

while guaranteeing complete patient secvice over several

7ime periods. We also require the aircraft to cycle

--rough the central base periodically. Because of the com-

piexity, we have to exploit the hierarchical structure of

Spatient movements within and between regions. Finally, we

wLi use a resource-directive approach to solve weekly

schedule problems that allows us to break down the very

large problem that result into a much smaller one. In

addition -o allowing a feasible solution to be found, the

decomposition approach generates information about the

c-anges :n service among clients that result when resource

-il-locatLons are changed, i potential we observed in our

oroputationa 1 demonstration.

0I



*% ~~'*'~~ -1214 -EN -- W-R --Atrvr-vwr - -- ar

256

*ENDNOTES

-. The idea is that div -Ionai resources are owned,

immobile or otherwise nct transferable, or that a separate

allocation decision has already occurred. In the case to

be studied, for xample, resources such as the staging

r facilities are assumed fixed, because transfers involve

major political and logistical difficulties as well as

substantial resource expenditures. Theoretically, such

transfers could be easily handled in (R') by relabeling

transferable resources as global.

, 2. Ruefli [REUF7Ib] and Watne [WATN77] define two types of

externalities treated in the decomposition literature.

Behavioral externalities are defined as "the

interdependencies that arise when there is a behavioral

(e.g., psychological) relation between the efforts of one

management unit to reach its goal levels and the efforts of

a different management unit to reach its own goal levels."

[136,p.301 Three types of technological externalities have

been dealt with by several authors. Watne's thesis

- [WATN77] deals extensively with the situation where the

activity level of a management unit is dependent on the

level of another kind of activity in another management

unit. Technological externalities create constraints of

"he type gk(XkX 1 V>O, which requirps the Introduction ot

new variables and constraints z and x1 -z=J. This has the

effect of internalizing the externality. A multiple

% .
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. cng pro ble arises i X -affects more than one

:Taaqemen r ur,. REIF7 ,p. 355 1

3. As many authors have noted, some models, for example,

Ruefli's GGD model [RUEF69], use both types.

Freeland I50i calls price direction coordination through

,oa iterven tion. Other common synonyms include transfer

oricnq FABDE74 and indirect distribution [TEN 723.

7 dirschIeifer's article [HIRS571 is the eariiest known

-raatrnert of the subject.

5. Resource direction is also called coordination through

c nstraint intervent ion [FREE73], direct distribution

*- ;EN 721, and resource budgeting.

6. The Kornai-Liptak algorithm does not converge in a

finite number of steps. The problem stems from the quasi-

linparity of the divisiondl objective functions: within

,regions of tne resource-share space the objective is

i nedr Iut Lf shares are changed beyond limited values

* unknown to the headquarters, shadow prices change

'nstantaneously. Kornai and Liptak utilize arbitrary

-' bounds and an averaging technique, rather than

m rat h matcal y rigorous criterion, to revise allocations

.ich that convergence is not assured. [TEN 72 ,1).8 8 51

.0
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7. Non-degenerate solutions are thosp in which all basis

(.olution) variables are non-zero. Such solutions yield a

single optimal bid price vector.

8. Freeland and More assume all global variables are fully

competitive only for ease of explanation. They call such

L.P.'s regular.

9. This is termed the order-of-degeneracy.

4. 10. Freeland and Moore contend that the set is infinite for

each division with degeneracy; the reference they cite

* (Eilon and Flavell [EIL074]) does not prove this assertion.

It is true that many-sided shadow prices occur with

degeneracy, and the point of all divisions choosing the

same vector being probabilistic is still valid. We assume

the infinite set can be created by taking convex

combinations of the finite set.

11. ten Kate avoids difficulty by forcing improvement in

the solution each iteration. However, the cost of doing so

is increased information transmission (divisional resource

shadow prices must also be sent) and increased complexity

-) (in the master program, where a constraint must be added

for each bid vector received.) [TEN 72,p.896-8971

%
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. CHAPTER IV

THE SINGLE VEHICLE, MANY-TO-MANY ROUTING PROBLEM

4.1 introduction. This chapter describes an algorithm that

solves one of the most basic aeromedical decision problems,

routing a single aircraft from a staging facility base

(depot), through all patient origins and destinations in a

region, and back to the depot. We will define and examine

methods to solve the vehicle routitig problem (VRP), the

'V general class to which this problem belongs, then mathe-

matically formulate the ordering restriction to deliver

* patients after picking them up. After examining solution

approaches in the literature, we will present a new algo-

rithm for the single vehicle, pickup and delivery routing

problem, and conclude with a computational demonstration.

While other algorithms solve this problem, none solves both

- the single vehicle problem and its multiple vehicle

- extension (which we cover in the next chapter) exactly.

4.2 The Fundamental Problem of Vehicle Routing. Using the

following definitions,

A vehicle route is a sequence of pickup and/or
delivery points which the vehicle must traverse in
order, starting and ending at a depot or domicile.
A vehicle schedule is a sequence of pickup and/or

* delivery points together with an associated set of
arrival and departure times. The vehicle must

: . traverse the points in the designated order at the
specified times. [BODI81, p.971

Bodin and Golden [BODI81] define two fundamental problem

classes:

it1 .
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When arrival times at nodes and/or arcs are fixed
in advance, we refer to the problem as a scheduling
problem. When arrival times are unspecified, the
problem is a straightforward routing problem.
[BODI81, p.98]

The two classes are not necessarily mutually exclusive;

two complicating characteristics, precedence relationships

and time windows, can create combined routing and sched-

uling problems. [BODI81] Precedence relationships stipulate

that one entity must be serviced before another, such as

when an entity must be picked up before it is delivered, or

when one entity has priority over another. Time windows

prescribe when, relative to some time base, an entity must

be serviced. Different types of windows include: a time

* interval (T1 ,T2], where T1 and T2 are acceptable service

commencement times; a fixed service commencement time

(T 1=T 2 ); a one-sided interval (T,=-- or T2= ); or windows

based upon service completion, rather than commencement.

The aeromedical problem includes precedence relation-

ships, but neither time windows nor fixed service times.

We are primarily interested, then, in finding a sequence of

* visits to all patient service points, subject to con-

straints, that maximizes or minimizes some objective

measure of performance. The nature of the medical service

0 provided to the patient is usually not germane to the

routing problem, but a patient's medical needs may impose

constraints such as no intermediate stops.

- - - - -% %
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A VRP, depending upon the specific application, may

incorporate one i of a number of objectives, such as:

1) minimizing routing (time, distance or monetary)
costs;

2) minimizing routing and vehicle acquisition costs;

3) minimizing the number of vehicles required;

4) minimizing customer disutility (e.g., a func-
tion of waiting and riding time) when the ser-
vice involves transporting the customer.

Our discussion of vehicle routing problems will make

use of the graph-theoretic concepts introduced in Chapter

* 2. Given the set of nodes N = {l,2,...,n}, n INI,

indexing n-i cities and a central depot, let the set of

arcs between nodes be A = {l,2,...,a}, a : lI, and C =

c..ij] be the costs of traveling arcs (i,j). In vehicle

routing problems, the solutions, X = [xij], consist of a

set of one or more paths, or routes, that vehicles will

travel; the (binary) decision variable, xij, will equal one

if arc (i,j) is in the solution, and zero otherwise.

4.3 The Single Vehicle Routing Problem (SVRP). The simplest

SVRP (of which Version I of the aeromed model is an exam-

ple) is the classic Traveling Salesman Problem (TSP), which

0 is to find a route that starts at a central depot, visits ne

cities, arid returns to the depot, and minimizes total dis-

tance traveled. To solve the problem, which has neither

routing limits nor vehicle capacity constraints, we must

find the matrix X=[xij] that will:

0
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Problem TSP:

Minimize Z - \ cx (4.1)
i=Ij =1

71

X =[ "E (4.4)

X suhecto x 1, j 1,2....n; (4. )

Prole ,P ca eitepee=s olw.Beas h

Similariy,2 .....ann (4s.3)
j =1

depX=[t . eT (4,4)

Xs=OorI. i2 (,2... n, (4.5)
/ = 1,2...r

Problem TSP can be interpreted as follows. Because the

% variables x must be either zero or one, the objective Z

esums the lengths of all arcs traveled. Constraint (4.2)

requires that one and only one arc terminate at each node.

Similarly, constraint (4.3) ensures that exactly one arc

4

;i departs each node. The objective (4.1), together with con-

straints (4.2), (4.3), and (4.5), are the familiar assign-

Sment problem (AP). If we prohibit self-loops, then cii =

for all i. With this restriction, AP becomes the Modified
A.

:. Assignment Problem (MAP).

Inproblem TSP, sltosmust betours, wihare

connected elementary spanning circuits of a complete graph

G. More specifically, we seek minimum weight tours, where

P. is in the domain of d, the range of d is > 0, and the

.' iweight of a tour is the sum of the arc weightsc 1 of the

'Narcs included in the tour. The set T in (4.4) prohibits0
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solutions with subtours (tours connecting fewer than n

nodes). Alternative ways to express T include: [GOLD77]

X, 1: V x" Iv 0 QCN} (4.4a)

T\ \ i _<Q- IVQC {2,3 . n (4.4b)

'(zQ EQ

'.x ]v -v s n n-I for2 -i j<_n ftr.;,nerea tbiot1rsv.v } (4.4a)

Note that IQI is the number of elements (cardinality) of

the set Q. The set Q is the complement of Q, i.e., Qn-Q=0.

To interpret each of the alternatives for expressing T,

let INI = 5, and choose Q = (1,2}. Suppose we have the

solution x 1 2 = = X34 = = X5 3 = 1, shown in Figure

4.1. This solution could not belong to T in (4.4a) because

no arc (1,j) or (2,j),where j((3,4,5} =Q, connects a node in

Q with a node in its complement. 2n constraints of type

(4.4a) are required to prohibit all possible subtours.

5 4

S -- Q Q

, Figure 4.1. Solution to a TSP.

Constraints (4.4b) require that subsets of r nodes must

have strictly fewer than r arcs connecting them. If we

S define Q as above, then the partial solution shown in

,I 'I 1 1

I L
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Figure 4.2 satisfies (4.4b), while the one in Figure 4.3

112

Fiqure 4.2. Feasible connection of two nodes.

X12 = l

X12

X21 = 1

Figure 4.3. Infeasible interconnection of two nodes.

does not. Again, 2n constraints are required.

* Miller, Tucker and Zemlin [MILL60] devised the con-

. straints in (4.4c). Let 1 index the depot. Select n2

,.. strictly positive, arbitrary real numbers ui and u,. Let

the subtour St=((i 2 fi3 ),(i3 ,i4 ),...,(ip,i 2 )) where p < n-i

and xi2i3 = xi3i 4 = ... xipi 2 = 1. Then we can write the p

A - 1 constraints:
11

U -u + n5 n-I

12 3

1 - u,, + n _n-I

.. If we taise a linear combination of these constraints,

-, I Iu"" L 11 t- + n ) 9 (p - I1)(n - 1),

, j=2 J +

S€

O

S-k
I. . , ,,, ;,, ,: ,, ,. -,. ,. . ..I " " " 'v" % % " < . .N
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then (p-l)n (p-l)(n-l), a contradiction. However, for a

tour, t ((i1 ,i2 ),(i2,i3 ),...,(in,ij)), choose ui  = j,

(j,2,...,n), where node i is the ith node visited. If

= 1 , then ui-uj+ n < n-I. Since uj = ui+l, ui-u j = u i-

-1;(u ) = -1; therefore, n-i _ n-i. If xij = 0, ui-u j  <_ n- %

S 1, because ui < n-i for uj 2.

Any one of these three alternative constraints is

sufficient to ensure that only tours can be feasible solu-

tions to Problem TSP. Most solution methods, however, do

not directly invoke these constraints as part of the solu-6
tion process, primarily because of the large number of con- .a

straints involved. Rather, through a process known gener-

ally as relaxation, subtour prevention constraints are

ignored (relaxed), the remaining problem (MAP) is solved,

2 and its solution is checked for the presence of subtours.

Using a recursive method known as divide-and-conquer, or

more commonly as branch-and-bound, MAP solutions are modi-

fied to partially correct violations of constraint (4.5),

and the relaxation process repeated, until the optimal sol-6
ution is found. The next section will examine branch-and-

,,g bound TSP solution methods.

4.3.lBranch-and-Bound TSP Solution Methods and Techniques.

ain general, like dynamic programming, branch-and-bound

a methods are strategies, not algorithms; they must be

,a,
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altered to conform to the structures of specific problems.

As Thesen notes,

The strategy is based on the premise that the
problem to be solved has the following attributes:

(1) Combinatorial nature--a combinatorial problem
has at the minimum the following properties:

(a) A finite set of objects is given.
(b) Each object can take on a certain

range of attributes.
(c) A solution to a problem is developed by

fixing the attribute values for all
objects.

(d) Only certain combinations of attribute
values are allowed.

(2) Branchability--implies that

* (a) it must be possible to construct a
finite and countable set containing
all the different solutions to the
problem (this follows from 1);

(b) it must be possible to recursively
- partition a nonempty set of solutions

into a nonoverlapping subset.

(3) Rationality--a problem that

(a) has solutions that yield a unique
* . value calculated from the values of

its attributes;
(b) has a "best" solution that has the

highest (or lowest) value.

(4) Boundability--an estimate of the value of the
best solution contained in any set of

* solutions can be obtained such that:

(a) the actual value of the best solution
in the set is inferior or equal to the
estimate (thus, the estimate is a
bound);

6 (b) minimal effort is expended in

obtaining this estimate;
(c) the estimate is reasonably close to

the actual value. [THES78,pp.171-1721
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in Problem TSP, the objects are the decision variables,

Xi, with one (binary) attribute. Like many combinatorial

problems, Problem TSP is NP-complete, with no known effic-

ient solution methods. For that reason, the boundability

attribute of Problem TSP is particularly important, since

efficient MAP methods are available to generate estimates

(bounds). Indeed, as an integer linear program, Problem

TSP cannot be solved for sufficiently large n, and an

indirect method such as branch and bound, or a heuristic,

must be used.

For a formal treatment of branch-and-bound methodology,

*[ we strongly recommend Mitten's article. [MITT70] To under-

stand our treatment of branch and bound methods, the reader

should be familiar with the following concepts, and with

assignment problem solution methods. Branch-and-bound

methods construct a solution tree describing all MAP solu-

tions explicitly solved, and implicitly enumerate large

groups of solutions without explicitly sol ing them,

through a process called fathoming or pruning. The nodes

of the tree represent versions of the original problem with

modifications to the data (costs) of the problem. The

original MAP is the first, or root, node of the tree. We

refer to the directed arc connecting two nodes as a

branching, the initial node of a branching as the prede-

cessor of the terminal node, and the terminal node as the

successor of the initial node.

iI
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A branching represents a modification of the

predecessor subproblem. In the remainder of the thesis,

modifications are restricted to requiring a decision vari-

able xij to have a value of 1 or 0 in the successor sub-

problem. (This corresponds to requiring or prohibiting

travel between two cities). Therefore, if a branching

requires one or more arcs to be traveled, the xij values

corresponding to these included arcs must equal 1 in the

subproblem solution, while prohibiting travel on an arc

requires that the value of xij corresponding to the

excluded arc must equal 0. Arc inclusions and exclusions

along the path of branchings from the root node to a

particular subproblem are cumulative; that is, a given sub-

problem retains all inclusions and exclusions of all of its

predecessor problems.

Feasible solutions that satisfy (4.5) are tours. The

upper bound is the lowest MAP objective value of any tour

solution in the tree. The incumbent is a solution corres-

ponding to the upper bound. Fathomed subproblems are those

. for which the solution (i) is a tour, or (ii), has an

objective value greater than the upper bound. No descen-

dents of fathomed subproblems are created; further

branchings would create restrictions that could not

possibly permit objective improvement. Unfathomed subprob-

lems, those with infeasible solutions and objectives less

than the upper bound, must be further branched. The lower._4i



* 269

bound is the lowest objective value of any unbranched sub-

problem. (Any subproblem objective is a lower bound to all

of its descendents).

Most branch-and-bound TSP solution methods use the

. assignment relaxation technique to solve subproblems. The

following operations for solving a subproblem are typical.

All branching modifications are made to the cost matrix.

The Hungarian or some other algorithm solves the assignment

problem, and produces (i) the solution values of the xij's,

(ii) the objective value of the solution, and (iii), the

final reduced matrix. If the solution is a tour, the upper

bound and incumbent are changed (if the objective value is

less than the upper bound), and the subproblem is fathomed.

Otherwise, the (infeasible) objective value is compared

with the upper bound. If less, the subproblem is

unfathomed; if greater, it is fathomed.

The process selects and branches unfathomed subproblems

until no unfathomed problems remain. Branching strategies

prescribe subproblem selection. A best bound strategy

selects the unfathomed subproblem with the lowest objec-

tive. A breadth strategy solves all the descendents of a

* predecessor. A strategy known by a variety of names such

as depth-first, newest bound, or LIFO, solves the first

descendent of the last problem solved. There is no

conclusive evidence of the superiority of any strategy.
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Regardless of the particular strategy employed, the

object of branching is to construct mutually exclusive sub-

sets of all solutions. If, among all possible branching

paths, each solution can only be found on one branch, then

the mutually exclusive and collectively exhaustive collec-

tion of subsets is called a partitioning. Branching strat-

egies observe the well-known fact that it is necessary for

optimal solution variables to have coefficients of zero in

the final reduced cost matrix, but that it is not suffic-

ient for a variable to be in the optimal basis if its final

* reduced coefficient is zero. Therefore, branching modifi-

cations are implemented as follows. Arc exclusions are

forced by assigning an extremely large value (M) to Cij,

such that Cij can never be reduced to zero. Assigning M to

all row i and column j elements except Cij will ensure that

cij is reduced to zero and that arc (i,j) is included.

Researchers have proposed two basic types of branch and

-. bound solutions for Problem TSP, tour building and subtour

elimination. We will next examine both approaches,2 and

then present an extension to the latter that will solve the

mixed service problem. Because upper and lower bounds play

a particularly important role in determining the solution

time of branch and bound algorithms, we also discuss some

particularly effective bounding techniques.
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4 .3.1.1 The Tour Building Approach. The Little [LITT63]

algorithm constructs tours by deciding in each iterative

step if an arc is to be included in or excluded from the

latest solution. The algorithm uses a best bound strategy

to select the unfathomed subproblem to branch, chooses a

branching variable, and creates two subproblems. In one,

the arc associated with the branching variable is included

in the solution, and in the second, the arc is excluded.

Thus, each binary branching partitions the solution space,

since arc inclusion and exclusion are mutually exclusive.

To construct the binary partition, the method utilizes

an opportunity cost strategy to select the branching vari-

able. Candidates for the branching variable are all varia-

Sbles with zero reduced cost in the final reduced cost

matrix [cij] of the branched subproblem. If candidate xij

is not selected, then any solution without arc (i,j) will

have to contain two arcs, one from i to any node other than

j, and another from any node other than i to j To make

this selection, they first compute

e,,. = mi .n (C~ + mi (k (4.6)

for all variables when cj= 0. They then select the best

branching variable, xjj* = max (eij}. Little et al show
(i,j)EA

-/ that this creates the largest increase in the lower bound

from the lower bound of the parent problem. [LITT63]
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Once x*jj is chosen, create two subproblems in which

lbY is the lower bound estimate of subproblem y, and h Z is

the sum of reducing constants necessary to have at least

one reduced cost of zero in every row and column of the

1 1b1=ho

x =0, i ij*: ij

lb2=h2+eij* A lb3=ho+hl

Figure 4.4. Little et al opportunity cost branching.

final reduced cost matrix of subproblem z.3  Fathoming

tests are applied, and the process repeats with the lowest

subproblem. To illustrate, suppose we have the cost matrix

in Figure 4.5. If each matrix row is reduced by the
1 2 3 4 5 6 7 8 9 10

1 M 184 292 449 670 516 598 618 881 909

2 184 M 195 310 540 357 514 434 697 964

3 292 195 M 215 380 232 434 493 719 955

. 4 449 310 215 M 288 200 566 787 790 1020

* 5 670 540 380 288 M 211 436 814 632 974

6 516 357 232 200 211 M 381 642 697 952

7 598 514 434 566 436 381 M 295 224 541

8 618 434 493 787 814 642 295 M 320 341

9 881 697 719 790 632 697 224 320 M 318

101 909 964 955 1020 974 952 541 341 318 M

Figure 4.5. Gillette's 10-city TSP cost matrix.

Source: [GILL76a]

'-No
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smallest constant in it, and the resulting matrix columns

3, 5, 8 and 10 are further reduced by the constants 11, 11,

23 and 46 respectively, the final reduced matrix for the

root subproblem results (Figure 4.6).

The superscripts in Figure 4.6 are the e1j. Since e12*

- 97, x12 * is the branching variable. The first three sub-

problems, then, would be those shown in Figure 4.7. Note

that for the arc exclusion branching, lb2 = lbi + e12* =

2346 + 97. lb3 is determined by deleting row I and column

2 from the final reduced cost matrix of subproblem 1

(Figure 4.6), setting c2, = M,4 and sumnming the constants

needed to reduce the rows and columns of the resulting

4- matrix. In this example, row 2 and column 1 of that matrix

must be reduced by 20 and 77 respectively. Since both sub-

problems 2 and 3 are unfathomed with the same lower bounds,

one of them must be selected arbitrarily and the reduction

process repeated.

There are several noteworthy features of the Little

method. First, an upper bound can be found by making n

successive arc inclusion branchings. Second, once an arc

has been included, the associated row and column of the

coefficient matrix can be deleted, because inclusion fixes

the value of xi at 1. This reduces the size of the

assignment problem that must be solved. Third, the method

0 can handle problems with additional constraints, by

restricting the candidates for branching variable to those

0
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1 2 3 4 5 6 7 8 9 10

1 NI 097 97 265 475 332 414 411 697 779

2 097 M 04 126 345 173 330 227 513 734
. 3 97 020 M 20 174 37 239 275 524 714

4 249 110 4 M 77 04 366 564 590 776

5 459 329 158 77 M 077 225 580 421 716

6 316 157 21 020 077 M 181 419 497 706

7 374 290 199 342 201 157 M 48 048 271

8 323 139 187 492 508 347 00 M 25 048

9 657 473 484 566 397 473 083 83 M 48

10 591 646 626 702 645 634 223 048 00 M

A' Figure 4.6. Final reduced cost matrix for the root
subproblem.

1 lbl = 2326

XI12=0 XI2=I,x21= 0

lb 2 = 2423 2 3 lb 3 = 2423

Figure 4.7. Partial solution tree using Little's algorithm.

which would not violate the additional constraints. In

*? other methods, treating violations of additional con-

straints requires more extensive algorithm modification.

4.3.1.2 The Subtour Elimination Approach. Subtour elim-

ination methods implicitly enumerate solution space subsets

in a manner similar to tour building procedures. However,
p."

the subtour elimination approach differs in the way sub-

problems are branched. Where tour building ignores the
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solution if it is not optimal, and uses an opportunity cost

analysis of the final reduced matrix to select the

branching variable, subtour elimination attempts to induce

feasibility by par~ially prohibiting the conditions that

caused the infeasibility (subtour) in a bubproblem assign-

> ment solution. Several difterent methods have been

proposed for doing so.

Bellmore and Malone propose the following general

subtour elimination method:

Step 1. Solve the MAP.

Step 2. Check for subtours.

Step 3. Eliminate subtours by imposing conditions
on the solution subspace that do not

i eliminate feasible solutions.

Step 4. Repeat 2 and 3 until an optimal feasible
tour is found.[BELL74]

..

It we use the number of articles in the literature as t-he

criterion, it appears that subtour elimination methods are

the most widely implemented solution method. In the

following sections, we will discuss subtour elimination

procedures in the chronological order of their development.

A; 4.3.1.2.1 Eastman-Shapiro. The first reported branch-and-

* bound subtour elimination method was originally proposed by

Eastman [EAST58], and later modified by Shapiro. (SHAP66]

The central feature of the method is the elimination of one

* subtour in an infeasible solution by excluding arcs in that
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subtour. To illustrate, suppose we have found the solution

to a six-city TSP depicted in Figure 4.8.

1 4S S

2- 3 5 6

Figure 4.8. Six-city TSP solution.

Let S = (1,2,3) be the set of nodes in the shortest5

I
subtour. Let S' = ((1,2),(l,3),(2,1),(2,3),(3,1),(3,2)) be

the set of arcs that could make (S,S'} a connected graph.

That is, let S'= {(i,j)Ii,jES}, and k = ISI. Bellmore and

Malone have proven that, "Imposition of the constraint,

-, < x.k-i, "either by integer programming or by splitting

the solution space, eliminates all solutions that involve

the subtour S". [BELL74] This theorem establishes con-

straint (4.4b). A subtour exists because the number of

arcs and nodes in the circuit are equal. Eastman and

Shapiro eliminate at least one subtour by prohibiting one

arc of the shortest subtour in each descendent subproblem.

IThat is, they create k subproblems, each prohibiting a

different arc of the shortest subtour.

As Figure 4.9 shows for our example, three new MAP's
I

are formed. No solutions are prohibited; e.g., subproblem

OP*5
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x k0

1: X2 3. x3 1 =O

m (n

Figure 4.9. Eastman-Shapiro branching.

1 and its descendents can not have arc (1,2) in any solu-

tion, but neither subproblem m nor n prohibit that arc.

Arc exclusions only guarantee that one subtour will be

* eliminated from 1, m, and n; the subtour can occur in other

non-descendent subproblems in the solution tree, and solu-

tions of descendents 1, m, and n can have other subtours.

Gillette [GILL76a] provides a FORTRAN code for the

Eastman-Shapiro algorithm. To solve his 10-city sample

problen. thp code ge-e ratps 1e0 subprob' ms. Gillette

reports an iBM 370/168 solution time of 1.79 CPU seconds.

Our trial on a Burroughs B6700 required over 51 seconds.

If, as a rule ot thumb, CPU tim.i increaen 1by a fr'tnr of

"4 ten for each increase in problem size of ten cities, this

method will not be capable of solving even moderately-sized

problems of, say, 50 cities in a reasonable time. 6S
4.3.1.2.2 Bellmore-Malone. Constraint (4.4a) is derived

from the following theorem:

"The added constraint" " x1 -],"eliminates all subtour

- '
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solutions of the k-city problem, as well as all subtour

solutions of the (n-k)-city subproblem remaining."

[BELL74], where S is any given subtour of length k, and S

is the complement of S. In a subtour, if one arc in the

shortest subtour is changed so that its final node is not

in that subtour, the subtour will be eliminated. Observing

Figure 4.8 once again, if, for example, we force an arc

from city 1 to link with city 4 instead of city 2, then

subtour ((1,2),(2,3),(3,l)) cannot exist. Therefore, in

this example, if we use the branching shown in Figure 4.10,

then subproblems , m, and n will each have at least one

arc in the shortest subtour replaced by an arc from a node

in the subtour to a node that is not in the subtour.

k

13 0 xX 3 2 O

X2 3 = 0

* Figure 4.10. Bellmore-Malone branching.

Like Eastman-Shapiro, Bellmore-Malone branching divides

the solution space into collectively exhaustive, but not

. .necessarily mutually exclusive, subspaces. Except for sub-

problems with subtours of cardinality 2, Bellmore-Malone

S. produces more highly constrained subproblems, because it

excludes a larger number of arcs. Whereas Eastman-Shapiro

£V
,.4";
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prohibit- ne new arc per subproblem, Belimore-Malone elim-

inates ISI - 1 arcs, which seems to enumerate solutions by

reducing the number of subproblems to fathom.

N In a simple computational test, we reprogrammed

Gillete's Eastman-Shapiro program to incorporate Bellmore-

Malone branching. The revised program generated 119 sub-

.d problems, and required only 21.8 CPU seconds. Although we

did not run more exhaustive tests (as others have), our

conjecture is that this is a rppresentative reduction in

computational effort.

Bellmore and Malone offer one additional contribution.

- For symmetric problems (cij = j = Vij), to reduce the

occurrence of two-city subtours that hamper the Eastman-

Shapiro method, they create mutually exclusive solution

subspaces using Murty's assignment ranking technique.

rMURT76] Suppose we have the subtour of length k, xi 0 il

*',,, xili 2  =.. .= Xik_1 i0  1. Form k subproblems where

-. XI: xi0 i = 0;

* X2 : xi0 il = 1; Xili 2  = 0; (4.7)

X3 ; Xi0 il = Xili 2  1; Xiii3  = 0;
."r

and so forth. That is, for the smallest subtour, begin by

excluding one arc. In the nexv subproblem, exclude the

next arc in the subtour, and include the arc(s) excluded in

the previous subproblem.

07

N:
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SIn the example in Figure 4.11, subproblems on the right

have many arcs excluded. Subproblem n, for example, has 15

exclusions.

2= 1 2  X3 1
= 0, X1 2=l

x 2 3=0 23=1

m n
4/ x

Figure 4.11. Bellmore-Malone-Murty partitioning branching.

* 1 2 3 4 5 6

1 M M M M M

2 M M M M M

3 M M

4 M M M

5 M M M

6 M M M

Figure 4.12. Subproblem n arc
exclusions.

Not only does this technique increase the number of

arcs prohibited, it also leads to the following situation

in Gillete's 10-city problem (Figure 4.13). Because we

make all arc inclusions and exclusions on all the branches

in the path from the root node (subproblem 1) to any given

suboroblem, the MAP for suboroblem 14 would exclude arc

(1,2) because of the branching at node 6, but it would

include arc (1,2) in the second branch of node 1. The

0"' % o"' """%-, ' . . ,"",.% " '' " % t ' - """ % ' -' '". ,"" J '' ,'" " " .,'' -'**.-" ". % 5 .'"' ":" ,, , " " '
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2p

[=1 2;0 x 12 =1, x 21 =O

2 ~3 )(7 >9 >7)

x79 x79=l, X97=0

}: i - > 2 - 3 -- > 6i)

X 12=0 23 l
*x 12=1 x3 1'0

X 2 3 =0

14 15 16 a

-* Figure 4.13. Partial solution tree for Gillete's 10-city
problem using modified Bellmore-Malone branching.

cumulative effect of including and excluding the same arc

is to set all cij in rows i and j to infinity, which means

that the objective value of the solution must be infinite.

Therefore, we need not solve subproblem 14. In Gillette's

problem, 20 subproblems were fathomed without solving them

-N.* as the result of this type of conflict.

With the Murty assignment ranking modification, then,

the Bellmore-Malone method partitions the solution space at

each subproblem node, reduces the number of subproblems

," that must be solved, and greatly constrains a subproblem
tthrough its cumulative arc icuonfare. Later it- our

tiiclso',au
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% discussion of improvements suggested by Carpento and Toth,.dd

we will show that an even higher degree of zubproblem

constraint can be achieved by choosing a particular subtour

for branching, and by selecting the first subtour arc to

exclude in a non-arbitrary way.

4.3.1.2.3 Garfinkel. Garfinkel [GARF73I observed that the

asymmetric branching method of Bellmore and Malone (the

method described above without Murty's modification) does

not partition the solution space at each node. If we define

Ek as the set of all arc exclusions on the path
from subproblem 1 to subproblem k,

-m as the set of all exclusions for the mth branch

k of subproblem k,

n as the index of the last subproblem created,

En+i as the new exclusions for subproblem n+i,

Sk= i'i2, ... ,rim) as the set of nodes in the

smallest subtour of subproblem k,

S as the complement of Sky

then the Bellmore-Malone asymmetric TSP branching rule can

be expressed as follows. Create m sets of arc exclusions:

E En+1 Ek  uE n + 1 Ek  U ((i1'j)1JESk&i1l'j}

;fn+ I= Ek jEn+2 Ek Lu {(i2,j)IJESk&i2:j}k

EF+ Ek UEn+2 =Ek U ((i 2 ,j)IjESk&i 2 : _j}

(4.8a)

,.l,±. =Ek U = Ek U (imEj) J Sk&i j}
k

0-I ,

F-"
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Construct and solve m MAP's, each with a different arc

exclusion set.

Clearly, the Bellmore-Malone method does not partition

the solution space. Using our six-city example, if the

,,, solution to subproblem 1 was that depicted in Figure 4.8,
'4

and we let k = n = 1, then our exclusion sets would be:

E 3  =((1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (2,1), (2,3) }

K~4 =(i1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (3,1), (3,2))}

Suppose the optimal solution is x 1 5 =X5 2 =x 2 6 =x 6 3 =x 3 4 =x 4 1 = .

Since none of the three arc exclusion sets contains any of

the optimal solution arcs, the optimal solution may be in

all three solution subspaces created by this branching.

Garfinkel modified this branching strategy so that the

solution space is partitioned at every subproblem node. His

procedure creates m exclusion sets:

* n+I= EkuEn+l

En F- Ek U {(ij,j)fj ESk bar) En+ 2

(4.8b)

nrn Ek j {iJ 1 {(ii,j) I j (Sk bar)) u E n + m

Mil

4C-
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The first set is identical to the first created by the

Bellmore-Malone method. The ith set contains (1) the cumu-

lative arc exclusion set (Ek), (2) the set of new exclu-

sions (En+1 ), and (3), exclusions that prohibit nodes

i1,i2,... ,ii, from linking with nodes not in the subtour.

In other words, as we consider each arc in the shortest

subtour, we force some nodes to remain connected with other

nodes in the subtour, while forcing the initial node of the

subtour arc currently considered to link with a final node

outside the subtour. In our example, El3 contains E3

=((l,4),(l,5),(l,6)}, and E, 4  also contains E4  =

E3 , (2,4), (2,5), (2,6)}.

To show that the Garfinkel branching rule partitions

the set of all solutions, Xk, of subproblem k, we must

determine a set of solutions, Xk =(Xkl,Xk2 '..,XkMl. Xk* is

a partition iff:

(ii) X' X 'E X* i;j implies X' I XJ = 0 V i.

(i) U=i m Xt = X where X' Xk , i = 1,2, .m: and
I =1 k k' k

Any solution to subproblem k will be found in exactly one

Xk i if Xk* is a partition. Clearly, Xk is a partition of

xk, since any solution x'in Xk must have

'x = /brsomet, 1-. m andj ES. (4.9)

In our example, xtj = 1, jESk, while x2j - x3j - 0 for jESk•

• .
4.
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11 Garfinkel did not apparently implement his algorithm,

or has not published his results. Tests conducted by

Smith, Srinivasan and Thompson (SMIT77] found their version

of his algorithm inferior in solution time performance to

other methods, including their cost operator technique.

4.3.1.2.4 Srinivasan-Thompson. The Srinivasan-Thompson

algorithm [SRIN73] uses their cost operator theory of para-

metric programming for the well-known transportation piob-

lem to accelerate subtour elimination methods for solving

Problem TSP. Essentially, their procedure parametrically

varies the MAP costs of arcs to be excluded, using the root

MAP optimal basis and dual variables, to calculate weak

lower bounds for each subproblem, as an alternative to

solving subproblems to optimality. Their example uses the

Eastman-Shapiro branching method, and they suggest (without

further clarification) that weak lower bounding is also

compatible with the Bellmore-Malone algorithm.

The Srinivasan-Thompson procedure employs the well-

0known concept in parametric linear programming that, if the

cii associated with a basic variable xij in a minimization

problem is increased, at some (calculable) limit, cij , xij

0 will be replaced in the basis by another (one of possibly

several non-basic) variable. Srinivasan and Thompson

utilize the fact that, over the interval (c i1  - cij), a

series of basis changes involving only degenerate variable
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exchanges take place. For each exchange, they recalculate

affected dual variables and the new objective value,

ZNEW ZOLD + 5, (4.10)

where 6 is the increase in Cij since the last exchange.

They call this new value of Z the weak lower bound. If a

basis change is made at cij ,xi will leave the basis, the

non-degenerate portion of the solution will change, and the

weak lower bound will equal the Eastman-Shapiro lower bound

(the subproblem's optimal objective value).

* Their method, in essence, generates a sequence of non-

decreasing primal feasible solutions, and the process can

be halted after any intermediate exchange, 8 after less

computation than would be necessary for complete execution

of the Hungarian algorithm. By simply recalling the orig-

inal cost matrix, the optimal dual variables for the root

node solution, the complete basis (including degenerate

variables), the excluded arc(s) and the latest parametric

value of its (their) associated cost(s), the process can be

* initiated or continued on any subproblem in the solution

tree. And, the dual solution and primal basis of any

intermediate solution are sufficient to provide a lower

* bound, thus avoiding having to solve an MAP to optimality.

To demonstrate the algorithm, define

X = (xi ) , a primal feasible solution of MAP,
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(i,j), a cell, i,j=1,2,...,n, i * j, and

B = ((i,j)}, the set of arcs associated with

the basis, with IBI = 2n-l.

The dual to (4.1)-(4.4) is

Maximize V U (4.11)

Sahe't u + v 1 5 c I.2.n / (4.12)
J U

u ,, v' )unrestricted, i~j =1,2,....nt. ( 4.13 )

where ui and vj are the dual variables associated with con-

straints (4.2) and (4.3). By the complementary slackness

theorem, the 2n-I equations0
Ui  + vj = Cij, (ij) E B, (4.14)

determine a one-parameter family of dual solutions, and

solution D = {dij = Ui + vj} satisfying (4.1l)-(4.13) is a

dual feasible solution. Solutions X and D that are both

primal and dual feasible are optimal.

By means of an example we will describe how their

algorithm works. Suppose for a given subproblem, arc (p,q)

is to be excluded. The object of the Srinivasan-Thompson

algorithm is to find the maximum amount, pi + , f-hat can be

added to c pq to force either a degenerate variable exchange

0 or xpq to leave the basis. For the matrix X (which is thebasis of the root subproblem for Gillette's 10-city problem

after two degenerate exchanges), with (p,q) = (1,2), their

scanning routine identifies chains beginning at (p,q)

connecting basic cells already in a chain with another
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1 2 3 4 5 6 7 8 9 10

ui

1 1 0 56

2 1 -97

3 0 0 1

4 1 0 -21

5 1 -10

6 0 1 -4

7 0 1 154

8 0 1 250

9 1 227

10 1 0 248

vj 287 178 242 210 221 227 -9 87 64 84

Figure 4.14. Srinivasan-Thompson example basis.

basic cell in the same row or column, much like the

Charnes-Cooper stepping stone process. This identifies two

sets, IP = (1,4,5,7,8,9,10), and JP = {3,6,7,8,9,10), that

index the rows and columns respectively in chains beginning

at (p,q). Sets Iq = (2,3,6) and q= (1,2,4,5} are their

complements. They then find

-+ min cij - u -vj (4.15)
• I (i,j) tip XJq- {(p,q)J]

the maximum by which the current parametric value of

can be increased, where the candidate values are those of

the familiar cell evaluators of the transportation model

[MURT76], computed using revised dual variable values. In

this instance, the minimum is 6, for (i,j)=(8,2). The

* previous objective is increased by 6, x8,2 is chosen as the0
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entering variable, and a stepping stone procedure deter-

mines a leaving variable and makes a degenerate reallo-

cation among the variables in the stepping stone path. ThC

final iterative step updates affected duals by adding 11i+

to ui' s with !Ep and subtracting p from vj's with jEJq.

When this procedure is executed again, x12 is chosen as the

leaving variable and the Eastman-Shapiro lower bound of

2500 is reached.

The algorithm offers several advantg es over the

Eastman-Shapiro strategy. Computations can always be init-

iated from the root optimal solution for any subproblem,

and very little information about a given subproblem needs

to be stored. Only simple row and column reduction opera-

tions are performed to set up for the scanning and basis

change routines. The method relies upon primal transpor-

tation solution techniques for which very powerful routines

exist to solve the root problem and perform stepping stone

and basis change steps, so it should yield considerable

' computaticnal improvement over Eastman-Shapiro.

The major disadvantage of the Srinivasan-Thompson algo-

rithm is its incompatibility with powerful new bounding

* techniques [BALA81. Since they require the optimal sub-

problem solution, this algorithm would be just a computa-

tional alternative, at best decreasing subproblem solution

time, but not the number of subproblems solved.
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4.3 .1.2.5 Carpento-Toth. Carpento and Toth [CARP80b]

propose a number of interesting modifications to the

Bellmore-Malone approach to the asymmetric TSP, including a

(i) new method for selecting the subproblem to be
branched;

(ii) procedure to eliminate unnecessary branchings,
and to choose the order of branching non-
arbitrarily;

(iii) lower bounding technique to determine if an
MAP solution will exceed the current upper
bound before reaching MAP optimality; and

(iv) data structuring and other implementation
improvements to increase algorithmic
cfficiency.

These modifications yield considerable improvement over the

Smith-Srinivasan-Thompson strategy in tests reported in

Management Science. (CARP80b]

Using their definitions, let:

N = l,2,...,n}, the vertex set;

L = f(ij)li,j E N), the arc set of

G(N,L), a directed graph;

G(N,,L,), a graph in which

N1  = (r1 ,r2 , ..., r P, p ! n, and

ll = {(rlir2),(r2,r3),...,(rpfri)}, is a

tour if p = n, and a subtour
otherwise.

If, at node k, G(Nj,Ll) is a subtour with m arcs, then the
% ' ,

Beilmore-Malone method would branch The subproblem into m

descendents, where for the jth descendent of k,
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E E k  ( ((rj rj~+)} and (4.16)

I k { (r.,r,+}) = l ..... j-l} (4.17)

are its excluded and included arcs respectively.

As pointed out in earlier discussion, if the Bellmore-

Malone branching excludes a previously included arc, then

we need not solve that subproblem. Carpento and Toth use

this property to compute

v = e IL I k! min (eq - ILq (- Ikl) (4.18)
q~ ,.. t

where t is the number of subtours in subproblem k, q

indexes the t subtours of subproblem k, Lq is the set of

arcs in the qth subtour, Ik is the set of included arcs,

and eq = ILqI. They select the subtour with the smallest v

for branching, which is the subtour with the fewest arcs

after the number of included arcs is deducted. By using

this technique, their algorithm will reduce the number of

branchings of individual subproblems, but it is not clear

how effective it is in reducing the total number of

subproblems solved, which is one of the most important

objects of a branching strategy. Since a number of

subtours may produce the same v, we presume Carpento and

Toth select one arbitrarily when ties occur.

To illustrate, suppose we have the subtour shown in

, F4.15 = {(4,5),(5,3)} and Ek ((3,4),(5,4),

(7,5). Branches 2 and 3 each exclude an arc in I k' which

pmeans that no feasible solution exists. Therefore, v 2-t
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indicates that only two branchings are required, even

though the subtour contains four arcs.

Vk
7 

3 (

5 )0

~Figure 4.15. Carpento-Toth subtour selection.

i In this same example, notice that we achieve the same

0 ; result if we select (3,7) as the first arc for exclusion.

,'&'-They propose criteria to make this choice in a non-
." .

~arbitrary way. Let q = (k - L }, the set of arcs in the

subtour not previously included. Carpento and Toth show

"% ' Ithat if two included arcs form a path, ((k,i),(i,j)}, then

neadtoa ar isexclude e ricung say ,i
, and (j,l). If hj is defined as the number of arcs linked 9

.. ' "..to the jth arc of L~q, then h. is the number of additional

' 2€2exclusions due to 'not-included' arcs linking with arcs in

;X

, ."- .' k .  They propose the measure
.= hj(v-l) hj5(v-2)

-," h1 (j-2) + . .. +h_ 2

Swhere the parenthetic terms in v and j decrease to zero.

They then select arc (i,f ) L to exclude on the first

branch, where u is such that w = max (wj, s =, .. ,v. In

case of ties they use the Little branching vatiable

exclusions . du to ' 'not&-included arc linin with arcs. ... in.... .



I . .. - .. . . , = r < - - - ,_ I- : i Awl . L l-WITIT, 
- 

K: _ L W-7 vt N

*293

evaluation technique to choose the first arc. They then

generate v branches (omitting those with an arc inclusion/

exclusion conflict), with j = v,v-l,...,l indexing the

revised ordering obtained by rotating the arcs in the sub-

tour until (iL,fu) is the first arc. Reversing the order

ensures that the last branch will be maximally constrained.

They also recommend Little's technique of making additional

exclusions that prevent subtours among included arcs.

.heir third modification, for lower bounding, appears

*to be the same as Murty's; during the solution of an MAP,

if their labeling ends in a non-breakthrough, they compute

the lower bound C + kH, where C is the optimal value of the

parent subproblem, k is the number of rows without alloca-

tions, and H is the minimum element in the labeled rows and

unlabeled columns. Murty accumulates reducing constants

and the products xH, where x is the difference betwee.i the

number of labeled rows and unlabeled columns. The subprob-

lem is immediately fathomed if the lower bound (the current

* dual objective) exceeds the upper bound.

For the fourth improvement, we both use the data struc-

turing technique of maintaining a queue of unfathomed sub-

problems in non-decreasing order of MAP optimal solution

value. Their cost matrix setup technique of finding a

ccmmon ascendant node for the last subproblem solved and

4 the next one to be solved, removing arc exclusions and

inclusions on the path of predecessors of the last problem ''I

F-

V

W V N
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.o up to the common node, then inserting the changes on the

descendent path to the selected subproblem is more effic-

ient than Gillette's technique of always ascending to the

root node. To include arc (i,j), they set all costs except

cij in column j to M, while we also set row i elements to

M, which more tightly constrains the MAP.

Our experience and their published results indicate

that these independently discovered but virtually equiv-

alent techniques do improve the Bellmore-Malone method sub-

stantially. In the next section, we will examine bounding

* methods that further improve the Bellmore-Malone method.

4.3.1.3 Improved Bounding through Lagrangean Relaxation.

Christofides and Balas [BALA81] have recently published new

bounding techniques that substantially improve the perfor-

mance of the Bellmore-Malone algorithm for asymmetric

traveling salesman problems.10 Although they address only

the classic TSP case, we will show in the next chapter that

their methods improve multiple vehicle and depot subproblem

solutions. In this section, we will only describe their

4 algorithm; for complete coverage of these methods, and for

0IN. proof of supporting propositions, the reader should refer

to Reference [BALA81].

The fundamental motivation for developing improved

bounding procedures is that

for all branch and bound methods, the quality
of the computed bounds has a much greater influence
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on the effectxveness of the algorithm than any
branching rules that may be used to generate the
subproblems during the search. [CHRI79]

Bounding Involves two separate problems: upper bounding, in

which the principal concern is finding feasible (tour)

solutions; and lower bounding, which seeks better estimates

of the optimal objective. The manner in which the two are

carried out is completely different.
V

Since the upper bound is only changed when a feasible

solution is found that is better than the incumbent, upper

bounding procedures must not only (i) be able to find
S

feasible solutions, but (ii) find such solutions as close

to the optimal as possible. Usually, this is done

passively; if a subproblem solution is a tour, then it is

compared with the incumbent. No process comparable to AP

relaxation exists for generating feasible solutions. Some

algorithms (e.g., Little et al., and Svestka and Huckfeldt)

do attempt to convert subtour solutions into tours, or find

a feasible tour through restricted branching, at least for

the first subproblem. However, even if a reasona. z effic-

ient procedure is used to generate feasible tours, close

proximity to the optimal is not assured.

* Christofides and Balas propose a method not only for

generating a feasible tour for every subproblem; they also

attempt to improve those tours if they are not optimal.

Since their method is closely tied to lower bounding proce-

s wi
* p
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then discuss their upper bounding technique, which gener-

"Z ates a tour using reduced costs revised through lower

bounding. We will conclude our discussion of their method

by mentioning some additional techniques made possible by

their bounding methods that greatly reduce the number and

size of subproblems to be solved.

5%

In the case of lower bounds, two major classes of

relaxations are used to generate lower bounds. The span-

ning tree approach, credited to Held and Karp [HELD70],

exploits the fact that in a network with n nodes and n(n-l)

* arcs (a completely connected graph without self-loops), a

spanning tree is a collection of arcs chosen such that

every node can be reached from every other node. Since the

optimal TSP tour is the shortest Hamiltonian chain with n

arcs, deleting the largest. arc in the optimal tour creates

**. an n-l arc hamiltonian path that is also a spanning tree.

The difference between a spanning tree and a hamiltonian

path is that the spanning tree does not necessarily consist

of a single chain that reaches all n nodes. (In a spanning

* tree, the nodes do not have to be of degree 2). The

shortest spanning tree (denoted SST) will be no longer than

! the hamiltonian path derived from the optimal tour, and,

therefore, the SST will provide a lowec bound on the

optimal tour.

In the symmetric cost TSP, the methods of Prim [PRIM57]

and Kruskal [KRUS56] efficiently find the SST. However,

"% I
N
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the asymmetric case is computationally more difficult, with

the result that each directed SST (DSST) solution on a

directed TSP graph requires 4-6 times more effort to solve

than a symmetric problem of equivalent size for problems

with up to 100 nodes. (CHRI791 Further, the quality of the

DSST bound is appreciably inferior to the quality of the

"V SST bound for the corresponding symmetric problem. [CHRI76]

The assignment problem, on the other hand, can be

solved efficiently, regardless of whether or not the cost

matrix is symmetric. More efficient methods are available

* for certain cases (e.g., Edmonds matching algorithm for

symmetric problems), but the critical point is that the

assignment algorithm need not necessarily be changed.

Christofides [CHRI79] found the AP solution inferior to the

DSST solution, but with additional bounding techniques,

Christofides and Balas improve an initial AP bound for each

subproblem until it is as close to the optimal as the DSST

bound, but requires 10 to 20 times less computational

effort. Experience to date indicates that the AP approach,

with modifications we will discuss next, is superior to the

DSST approach to lower bounding in computational effort,

while yielding comparably tight lower bounds.

The essence of the Christofides-Balas method is to

start with an AP solution, then solve a restricted

Lagrangean problem in which violated subtour prevention

constraints are included in the objective via Lagrange

.9,,

ANW
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multipliers. After applying three bound improvement techn-

p. iques, they search for a tour, which, if found, is either

optimal or provides a new upper bound if better than the

incumbent. If the tour is not optimal, additional improve-

ment is sought in the lower bound through use of three

additional bounding techniques. If no tour is found, a

heuristic is employed to generate one.

They begin with the graph Go = (N,A0 }, where A0

((ij)Iij=O}, and the Zij are the final reduced costs gen-

erated by the AP algorithm. A0 is called the admissibles

* matrix, and any tour must consist only of arcs in A0 . In

the admissibles graph we will find a tour iff every node is

accessible from every other node. We might see, for

example, the admissible arc graph shown in Figure 4.16,

3 -

•5

.4.4

I,2 4.

* Figure 4.16. Graph Go.

where the optimal AP solution consists of subtours

S(( ,2),(2,3),(3,i)) and ((4,5),(5,6),(6,4)). Arc (6,1) is

an admissible arc (c6,1 = 0) not in the solution. An opti-

mal tour consists of arcs from Go , but a tour cannot exist

if we can find a cutset Kt = (St,St), where O(S t cN for
S..

A!.

L% ,'
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which no arc (i,j) exists in Go when iESt and jESt. We

search for the cutset by finding all nodes accessible to

node 1, then all those accessible to node 2, etc., until

(i), all nodes are accessible from a given node, or (ii),

the accessible set of nodes for that node is less than N.

Tf the latter case occurs, then St contains the given node

plus all arcs accessible from it along arcs in Go. In the

example above, node 1 can reach only itself, node 2, and

node 3. Therefore, K1  = (Si,) ((l1,2,3},(4,5,6}).

Therefore, (4.4a) cannot be satisfied without, as a

minimum, admitting the arc (i,j) E K1 corresponding to
o =r (4.19)
['I m in {' •

ti cI,

and penalizing every arc of K1 by setting cij j - L 0 , V

(i,j)EK I . If v(MAP) is the objective value of the AP opti-

mal, then Christofides and Balas show that a better lower

bound is

U =v(AP)+ \' LO (4.20)

tz T1

where Ti is the set of subtours violating (4.4a). If arcs

are added to G o whose reduced costs cii are reduced to

zero, then the resulting graph will be strongly connected

when all nodes are accessible from every other node. If,

for example, arc (3,6) is added to G O, then all nodes will

be reachable from every node. They prove that, at most,

i2(h-l)(h-2) cutsets are required, where h is the number

:f subtours, and since the maximum h is the integer portion

of N/2, the cutset procedure is polynomial.

I
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Their second procedure treats violated constraints of

the type (4.4b). It utilizes the concept of a cover, a set

of row and column indices of the reduced cost matrix such

that, if lines were drawn through those rows and columns,

all reduced costs of zero in a subtour would be 'lined

out'. The procedure finds covering lines, for one subtour

at a time, that, (i) cover an allocated arc with both nodes

in the subtour exactly once, (ii) cover non-allocated

admissible arcs with both nodes in the subtour no more than

once, and (iii), do not cover any admissible arcs with only

one node in the subtour. Costs cij are further reduced by

a penalty,
.in {Z } ' (ij)CM (4.21)

where M is the set of arcs with exactly one node in the

subtour, and arcs covered by two lines with both nodes in

the subtour. Since reduced costs must remain at or above

zero, no penalty can be applied if one of the candidate

costs is already zero.

The second procedure finds new admissible arcs that

eliminate violations of (4.4b); (4.4b) requires that only a

path (containing one arc less than a hamiltonian circuit

Ja' through a subset of nodes) formed by the solution connect

the nodes in St . If At is the set of allocations whose

arcs have both ends in subtour St. then the subtour will

not be eliminated unless there are at least two nodes in*
,.1 the subtour with degree greater than 2 in G.. If this is

J.4.
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not the case, then additional admissible arcs must be found

using penalties to reduce costs to zero that are incident

into and out of adjacent nodes in that subtour.

Suppose graph G o consists of the admissible and

allocated arcs shown in Figure 4.16 after the first

bounding procedure. Consider node 5. Since only arc (4,5)

reaches node 5, and only (5,4) leaves, subtour

((4,5),(5,4)) cannot be eliminated until the degree of node

5 in Go is increased, while insuring that reduced costs c 4 5

and -c54 remain zero.

08

4., 9

Figure 4.17. Graph G o after the first bounding procedure.

The covering procedure utilizes the reduced cost matrix

- (Figure 4.18) produced by the first bounding procedure.

The symbols 0h represent allocations. The lines enclose

the reduced costs of arcs with both nodes in a subtour. In

this example, we can find a penalty for subtour

((4,5),(5,4)) by covering row 5 and column 5, selecting the

penalty c 5 7 = 7, and reducing all costs associated with

-Ul
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arcs in M before adding the new admissible arc (5,7) to Go0 .

This procedure is executed once for each subtour.

1 2 3 4 5 6 7 8 9

1 M 0* 6 5 9 6 6 5 7

2 4 M 0* 4 10 6 4 6 9

3 0* 3 M 5 10 7 3 0 7

4 5 7 9 M 0* 0 3 7 8

5 4 8 10 0* M 10 6 9 7

6 4 4 8 6 11 M 0* 4 5

7 3 5 4 0 2 9 M 0* 6

8 0 6 3 5 8 6 9 M 0*

9 7 3 7 9 6 0* 5 5 M

0 Figure 4.18. Reduced costs after first

bounding procedure.

Source: [BALA81]

The third bounding procedure eliminates articulation

points in Go. Articulation points are vertices such that,

if all arcs incident into and out of them are removed, Go

is disconnected and at least one of the components is one

of the original AP subtours. Any circuit connecting such a

subtour would have to include the articulation point at

least twice, which means that circuit could not be

elementary, which a tour must be. Articulation points are

eliminated via a cutset approach.

* Figure 4.19a illustrates an admissible graph with an

artic-ulation point (node 4). Removing all arcs containing

node 4 creates the disconnected graph in Figure 4.19b. Two

a

cu s t r4o md t ={t ,S -4 } n t= { t
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(4)},(S,}). The penalty

L' - fiun 17"} (i, K' K"t t (4.22)

is applied to all reduced costs of arcs in both cutsets.

4. 3
5

2 -

V 7

(a). Go with an articulation point.

Kt' -' - Kt

2 " I I I
". "I I6

1 I I

(b). G. with articulation point removed.

Figure 4.19. Articulation point removal.

After the third bounding procedure, Christofides and

Balas use a multi-path hamiltonian circuit search procedure

* iCHRI75] to find a tour. Three cases can occur:

1) No tour is found.

2) A tour is found that satisfies all inequalities
for which positive multipliers were found in
the bounding procedures.

3) A tour is found that violates some of the
inequalities in (2).

V.'

04
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In the first case, an attempt is made to add arcs in

increasing order of reduced cost until a tour can be found.

In the second case, the tour is the optimal for the overall

problem. In the third case, modified versions of the three

bounding procedures are executed, to attempt to satisfy

some of the violated constraints, and (iff all violated

constraints can be satisfied) find the optimal tour.

As a final improvement, Christofides and Balas

recommend that arcs with reduced costs greater than the

difference between the lower and upper bound for a subprob-

0lem be excluded from the solution (by setting the reduced

costs very high). They also provide an alternative

branching disjunction, to be used in place of the Bellmore-

Malone method under certain circumstances.

4.3.1.4 Comparison of SVRP Methods. Scientifically testing

and comparing solution methods is virtually impossible.

Intervening variables, such as computer hardware, operating

system, and programming language differences; the lack of

* standardized problems; and variations in programmer skills

and techniques, confound comparisons. Data magnitudes can

strongly influence solution times. [CARP80b] Computer
processing speeds are difficult to compare, forcing us to

to use rules of thumb, such as the CDC 7600 is about 3

times as fast as the UNIVAC 1108 [BALA81], and the CDC 6600

is 10 to 50 per cent faster than the UNIVAC 1108. [SMIT77])

9...2
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Machine storage, algorithm, and program design limitations

restrict pLubiem size, so the largest problem solved by a

particular implementation may not necessarily indicate an

algorithm's maximum potential. And, theoretically proving

that an algorithm always finds optimal solutions does not

guarantee that result when it is programmed.

Despite these comparability problems, the results of

* tests described in Table 4.1 strongly suggest that improve-

ments in algorithm design, particularly bounding techniques

V developed by Balas and Cristofides, have both increased

maximum problem size and reduced computation time. What

these statistics do not show is that, regardless of the

machine used, the algorithms with the best computational

*. times consider far fewer subproblems, which means that the

improvement in solution time is because of considerable

reduction in work done, and not simply due to the use of

faster computers.

4.3.2 Vehicle Routing Problems with Precedence Restrictions

* and Time Windows. Earlier, we defined a precedence rela-

tionship as one in which one entity must be serviced before

another. In the last chapter, we described the aeromedical

service porblem as the need to transport a patient from an

originating to a destination hospital. Obviously, this

FS. requires us to visit the origin before the destination,

*which creates a precedence relationship.
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However, the precedence relationship is in the order or

sequence of visits, and does not explicitly involve time

windows. The total time to service a patient includes

preparation for travel, ground transportaticn from the hos-

pital to the airport, air transportation, a second ground

transportation phase, and stabilization at the destination

hospital. [SIVE78] Air transportation time is usually

insignificant compared to the other phases, but the other

stages are scheduled to conform to the aircraft routing

schedule. (The schedule is estimated using expected flight

and ground times for the routing sequence.) This means

that the orginating hospital is given a time for the

patient to board the aircraft, so that aeromedical planners

normally do not have to observe pick up time windows. And,

there usually are no delivery time windows for patient

arrival or service at the destination medical facility.

Therefore the aeromedical routing problem is not the more

* ',* difficult combined routing and scheduling problem.

Obviously, in urgent medical cases, minimizing trans-

* portation time can be critically important, but the typical

response is to either route a reserve aircraft directly to

that patient, or to re-route the closest scheduled aircraft

•directly to that patient's location. The "in-between"

case, the priority catelory, creates a routing constraint,

rather than a time win -w, since the rules only stipulate

* pickup within one day. If, in isolated instances, pickup

or delivery times must be met, (for example, to accomodate

Ma
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airport operating hours), suitable choice of initial depot I
departure time will usually suffice, or at worst, re-

routing may be required. Again, time windows are not norm-

ally part of the aeromedical routing problem, and, there-

fore, the scheduling problem is avoided.

While precedence constraints and the lack of time win-

dows do not introduce the scheduling complication, prece- II
dence relationships do complicate routing problems. With-

out precedence relationships, three useful properties hold

in Problem TSP with symmetric distances. First, if we form

the convex hull of cities in the plane, extreme points of

the hull will be visited in order. [BARA56] Second, optimal

arcs will not cross [FLOO56]. And third, one optimal tour

is equivalent in solution value to another constructed by

traversing the first in reverse order. Each property gives

rise to effective solution methods, particularly heuris-

tics, that will not work with precedence constraints. To

see this, note that with the first property, if the clock-

wise order of extreme points is +1, -1, -2, +2 (where +i

indicates the origin of i and -i his destination), visiting

the extreme points in order would create routes in which

destinations are visited before origins. Psaraftis shows

optimal solutions that violate the second property.

[PSAR78] The third obviously does not hold, since origin-

destination order cannot hold in both directions. The

point, then, is that TSP methods cannot solve routing

0J
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problems with precedence relationships without modifi-

cation.

Two modifications that observe precedence relationships

will be formally introduced in the next section. The

first, due to Gavish and Srikanth [GAVI79], introduces

additional flow variables into the open tour TSP problem in

which constraints can be written that strictly require a I.

patient's origin to be visited before his destination. We

will introduce a second approach which requires no addi-

tional variables, and with only slight modifications to the

* Bellmore-Malone branching technique, solves the SVMRP by

branch and bound.

4.4 Mathematical Formulation of the Single Vehicle, Many-

to-Many Routing Problem (SVMRP). Several problems,

including the aeromedical and Dial-a-Ride problems, belong

to the general class known as many-to-many routing and

sequencing problems.'1  The term many-to-many refers to

those problems which have both multiple collection (pickup)

and multiple distribution (delivery) points (cities).

* Many-to-many routing problems occur in a number of situa-

tions. To illustrate, suppose we have the requirement to

pick up a person at one (origin) node, and deliver that

* person to one (and only one) destination node. Thus,

instead of having a single source generating trips to many

destinations, or many origins generating trips to a single

* destination, as in the TSP, we have many origins generating

trips to many destinations, hence the term many-to-many.

m%
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*When the origi-esinaio precedence relationship is

added to Problem TSP, the order of visits to cities

implies, correctly, that an origin be visited before the

destination for each person. Stated differently, we must

find ordered sequences of n arcs

0 = f((i0,il),(ili2),...,(in~i 0  ))), (4.23)

where, if ia is the origin of a passenger, and ib is his

destination, then a < b, for every passenger. Of course,

sequences that observe this ordering must also be tours.

This ordering restriction is the principal difference

between many-to-many and TSP problems.

In the following we assume:

(i) Each node (except the depot) is exclusively
either an origin or destination for one and

only one passenger.
12

(ii) The depot is neither an origin nor a desti-
nation for any passenger.

(iii) There are n passengers, and hence 2n + 1
nodes.

We will label the origin and destination nodes using

two different conventions. In the first, let the

* i if j is the origin of patient i

node label of j = 1 if j is the destination of patient i

0 if node j is the depot

In the second scheme, let

. +i if j is the origin of patient i

node label of j = if j is the destination of patient i

0 if node j is the depot

i J.

S•
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The first scheme facilitates the use of summations in math-

ematical expressions, while the second is useful in graph-

ical presentations and algorithm development.

Gavish and Srikanth [GAVI79] formulate the SVMRP as an

integer linear program. In their formulation, they split

the central depot into two nodes, labeled 0 and 2n+l, and

add the restriction that the vehicle must initially depart

node 0 and must terminate at node 2n+l, never arriving at

node 0 nor departing node 2n+l. Thus, feasible solutions

must be Hamiltonian paths, but not circuits. 13

* The Gavish-Srikanth formulation is to

(P1) Find variables xij, Yij, i,j=1,2,...,2n+l, that
2n + 12n+1 (4.24)

Minimize Z =\ c x
itI = =0

2n+1 (4.25)
-,.uhj ect to: \ x =1 j l,2,...,2n+I.

2n+1 (4.26)s\ " XL = 1 i= 1 , .....,2n + 1 :

]yj I i 1,2 ...,2n+:2n'
"

-i 2 t = (4.27)

X, v 5 (2n+l)x i,j=l,2...,2n+1; (4.28)

2n -I 2, + 1 (4.29)

- } f) - 2n4-lJ 1

X 2:0, o V ij (4.30)

I- 2n1 (4.31)

v - V = 1 i= 1,2 .... n.
-, 1 += L

i1=0 '=0

led
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They establish the following conditions that must be

met by a solution to the many-to-many problem:

(i) the vehicle must arrive at a non-terminal node
once and only once,

(ii) the vehicle must depart a non-terminal node
once and only once,

(iii) the vehicle must depart node 0 once and only
once, and never return to it,

(iv) the vehicle must arrive at node 2n+l once and
never depart it,

(v) the route must not contain subtours, and

(vi) the origin must be visited before its assoc-
iated destination for each patient.

* They prove that Pl meets these conditions:

1) Constraint (4.25), for j=l,2,. . .,2n, satisfies
(i), and constraint (4.26), for i=1,2 ... ,2n,
satisfies (ii). Together, these constraints
insure one visit to every non-terminal node.

2) Constraint (4.26), for i=0, and constraint
(4.29) ensure that the vehicle departs but
does not arrive at node 0, satisfying (iii).

3) Constraint (4.25), for j = 2n+l, and con-
straint (4.29) ensure that the vehicle arrives
at, but does not depart, node 2n+l.

4) Constraint (4.27) ensures that subtours do not
occur. Observe that subtours cannot contain

0 node 2n+l or node 0, since constraint (4.29)
restricts the degree of those nodes to 1.
Suppose we had the subtour shown in Fig. 4.20.

ii3

* Figure 4.20 Four-city subtour.

0vj
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Let = k. From constraints (4.25-4.27),

'n+ 1 2,z+ I rz+I

\" v - \" =- " -/ = 1

'" j =0 2 ;7u j7=0

k+l. Similarly, yiK34 k+2 and Yi 4 il =

k+3. Then, for node ij:

2n+-1j 21t+ I
- =k -k+3)= -3,

=0 I J=O

which violates constraint (4.31). Therefore,

constraints (4.29) and (4.27) satisfy (v).

5) Constraints (4.31) and (4.27) satisfy (vi).

Constraint (4.27) forces a strict unit
increase in flow in successive arcs in the

solution path. The first summation term of

constraint (4.31) is the flow out of the dest-
ination for passenger i. The second summation

- is the flow out of the passenger s origin. By
forcing the first flow to exceed the second by

at least one unit, the destination node must

be at least the first node after its corres-
ponding origin node in the solution path.

Gavish and Srikanth also note that constraint (4.29) is

unnecessary if cio = c0,2n+i = ' V i. They do not let Cn+i, i

= V 1 < i < 2n. Logically, the directed arc from a dest-

ination to its corresponding origin should be prohibited,

. eliminating 2n variables. They also do not let c i ,2n+l = "

i 5 n, even though the vehicle should not be routed from an

origin directly to the terminal.

Gavish and Srikanth do not explain the two functions of

constraint (4.28). First, it serves as an 'either-or' con-0
,% straint, so that if x i = 0, then Yij = 0. Second, since

WIN, there are 2n+l arcs in a Hamiltonian path through n nodes,

and since xij is either 0 or 1, (4.28) restricts Yij to a

- 1]
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value no larger than 2n+l. To illustrate, suppose n = 3.

Figure 4.21 shows one possible path.

flows

0 1 2 3 '4 -5, 6 7 0

terminals

Figure 4.21. Hamiltonian path through 2n+l nodes.

In this case we observe strict unit increase in flow such

that the last arc has a flow of 2n+l = 2(3)+l = 7.

This mixed integer formulation (the yij variables are

not required to be integer) requires 2(n2 - 2n) variables

and 4n2 + 8n + 3 constraints. Since Gavish and Srikanth do

not suggest any solution method or computational results,

we are not aware of any attempts to directly exploit this

formulation. For even small values of n, their formulation
'-.

Cwould create a very large problem.

Now, consider a second formulation derived from the

traveling salesman problem. In this approach we make the

same assumptions as Gavish and Srikanth, except that we do

not create two terminal nodes. Also, we use slightly

different notation in our discussion. Table 4.2 shows the

correspondence between the two node labeling schemes. Node

4, the destination of passenger 1 in the first scheme, is

labeled node -1 in the second. Node 0 is the terminal. In

%%A
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the following discussion we use these labeling conventions

interchangeably.

TABLE 4.2

4NODE LABEL EQUIVALENCES

Nor'- Laes

Scheme Terminal Origins Destinations

! 0 1 2 3 4 5 6

2 0 +i +2 +3 -1 -2 -3

We continue to let cij be the cost of traveling

directly from node i to node j, and cii = i. And, we

let cn+i, = , i 1 l, and c, , 1 _ i _ n, since the

-. vehicle should not be routed directly from +i to -i (n+i to

i) for any passenger, nor should the vehicle go directly

from an origin to the terminal, as this would imply at

- least one passenger not being delivered. Finally, let co i
'S= f, 1 > n to prevent the vehicle from going directly from

the terminal to a delivery point.

.4 Before we present our formulation, we need to introduce

the concept of an infeasible chain. To do so, suppose for

a seven-city problem, we solved the traveling salesman

problem, and obtained the optimal tour in Figure 4.22,

where the node labels are from Table 4.2, S is the set of

% . properly sequenced nodes, and S is one (in this example,

the only) set of improperly sequenced nodes. We define an

infeasible chain as a path beginning and ending at a pair

of improperly sequenced nodes. in this example, the
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infeasible chain is ((5,1),(1,2)), using the first labeling

scheme. The length of an infeasible chain is the number of

arcs between the first and last improperly sequenced nodes.

6 
-2 S

+3

i -3 -1

. 4 S

Figure 4.22. An optimal TSP tour.

TSP solution procedures will not eliminate infeasible

chains without modification. Even if we find the optimal

TSP tour, TSP(x*), if it contains an infeasible chain, then

that tour cannot solve the SVMRP. Before we propose an

SVMRP solution technique, there are a number of properties

* we should formally establish about SVMRP solutions and

infeasible chains.

Theorem 1. If TSP(x*) is the optimal solution to
Problem TSP, and SVMRP(x*) is the

* optimal solution to Problem SVMRP, then

V. TSP(x*) : SVMRP(x*).
M.0

i I



* 317

Proof. By definition, TSP(x*) is the shortest tour of n

nodes. By definition, any SVMRP solution must ue a tour.

Therefore, SVMRP(x*) cannot be less than TSP(x*). Q.E.D.

Remark 1. The shortest subtour is of length 2.

Proof. Self-loops are prohibited. By definition, a subtour

is a path, and a subtour must therefore have the same

initial and final node. At least a second node must be

included in the subtour path; otherwise, it would be a

self-loop. We can easily construct a subtour of two nodes
S;.

*(see Figure 4.1); therefore, a subtour of length 2 exists.

Because subtours of length 1 are impossible, the shortest

possible subtour is of length 2. Q.E.D.

i Lemma i. The longest subtour of N cities is N-2.

Proof. If we partition N, and restrict the size of the

.smallest disjoint subset of N to 2, then the largest dis-

joint proper subset of N is N-2. The length of a subtour

is the number arcs it contains, which by Lemma 1, is also

the size of the node set of the graph of the subtour.

Therefore, since the largest disjoint proper subset of N is

N-2, the length of the largest subtour is also N-2. Q.E.D.

Lemma 2. The longest infeasible chain in a tour of
N cities is N-4.

Proof. The length of a tour of N cities is N. Referring to

Figure 4.23, representing an N-city tour, if we continue to

* assume that c01 = , i > n, then the first arc from node 0

.' must be incident into a passenger origin. Similarly, the
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arc incident into node 0 must be incident out of a desti-

nation node. Therefore, the first and last nodes of any

feasible solution must be properly sequenced. Since we

have defined the length of an infeasible chain to be the

number of arcs linking two improperly sequenced nodes, then

an infeasible chain can begin no earlier than the node

adjacent to the first (properly sequenced) node after node

0. The chain must end at least at the second node prior to

node 0 at the end of the circuit. Therefore, four arcs

cannot be included in a feasible chain. Since we can con-

struct an example of an infeasible chain of length N-4

(Figure 4.22), one exists. Therefore, the longest infeas-

ible chain of N cities is of length N-4. Q.E.D.

£4...

i-k 0

Figure 4.23. An infeasible N-city SVMRP tour.

Lemma 3. The length of the shortest possible
infeasible chain in a tour or subtour of N

*cities is 2.

Proof. By Remark 1, the shortest tour or subtour is of

length 2. The minimum length of an infeasible chain is 1,

because an infeasible chain must be a path between two

4,.
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v improperly sequenced nodes, and a path must contain at

least one arc by definition. However, infeasible chains of

length 1 are prohibited, because directed arcs from

destnations to origins are prohibited. Therefore, the min-
imum length rust bn least 2. We ccn constuct an exam-

ple of an infeasible chain of length 2, ((-i,+2),(+2,+l));

therefore, the shortest possible length is 2. Q.E.D.

Lemma 4. An infeasible chain cannot occur in a sub-
tour of length leso than three, nor in a
tour of length less than 7.

Proof. For an infeasible chain to occur in a subtour ofS
length 2, the two nodes would have to be +i and -i. One

arc would have to be (-i,+i), by the definition of a sub-

tour. However, thAt arc is prohibited by definition.

Therefore, subtours must be of length 3 or greater to con-
,

tain an infeasible chain. Q.E.D.

In many-to-many tours, N must be an odd integer, since

there must be two cities associated with each passenger,

plus the terminal. To show that N must be at least 7, we

* can eliminate 1, 3, and 5 as possible values of N. N = 1

implies a no-passenger problem. With only one passenger,

and N = 3, an infeasible chain cannot exist because, by

* Lemma 2, its length would be 0. N = 5 is also impossible,

because by Lemma 2, the length of the longest infeasible

chain would be 1, which contradicts Lemma 3. Figure 4.24
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shows a tour where N 7, with infeasible chain ((-

2,*-3) ,(+3,-l), (-l,+2))

' ° Figure 4.24. An infeasible 7-city SVMRP tour.

~That infeasible chains exist with N greater than 7 can

°.'

Sbe shown by construction. Given an infeasible chain for

~any N : 7, an infeasible chain for N + 1 can be constructed

by simply inserting 1 4 the two new passenger nodes anywhere

in the chain. The sequencing of the previously improperly

~sequenced nodes cannot be changed by an insertion, so they

remain improperly sequenced. Therefore, tours must be of

• at least length 7 to contain infeasible chains. Q.E.D.

, As Gavish and Srikanth have shown, the many-to-many

~problem is equivalent to Problem TSP with the additional

~condition that, for every passenger, the solution provides

for visiting his origin before his destination. Therefore,

if N 2n+2, where n is the number of passengers, the

, second formulation of the many-to-many problem is to

nt



321

Problem SVMRP:

Find variables xij, ij 0,1,2,...,2n that will
f!! 2,n 2,1

( 4.32)

. jjj"1 Z C X

2ri

J,'t~ t4) -'.r = 1. j = 0,l1,2. n; (4 .33 )

" . ,l,2,. .. ,n; (4.34)
t 1..

X= [xt I T (4.35)

X -- I I(0(4.36)

- , ,(4.37).r ) o 1, i 0 , , _ _..

- This formulation contains several differences from

Problem Pl. Only one terminal is used. Flow variables are

not used; instead, constraint (4.36), where 0 is defined by

(4.23), restricts solutions to those which contain proper

sequences of nodes. In the following sections, we will

examine a number of alternatives for solving Problem SVMRP,

and then we will present a modification to the Bellmore-

Malone method that will solve (4.32)-(4.37).

4.4.1 Single Vehicle, Many-to-Many Solution Methods. In the

next three sections, we will examine three different SVMRP

solution techniques. Although in each instance we will

find a major problem applying these technique to the

aeromedical oroblem, each has interesting features that

could potentially be incorporated in our solution model,

which we propose as a promising area for future research.
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4.4.1.1 Dynamic Programming. Psaraftis [PSAR78] has devised

an exact, dynamic programming (DP) approach to SVMRP. His

major application has been the so-called Dial-A-Ride Prob-

lem, in which small buses or vans are routed to pick up and

deliver customers (typically the elderly, handicapped, or

indigent, in urban areas) who telephone a dispatcher for

service. He treats two versions, the subscriber case, in

which all customer demands are known before routes are

determined, and the demand-responsive case, where customer

-x requests received after vans are dispatched are handled by

A' dynamically revising routes. The dial-a-ride and aeromed-

*° ical problems are very similar, but differences do exist,

such as the use of priorities in the aeromedical case.

Assuming that each customer has a unique origin and

destination, Psaraftis's model finds an optimal open tour 15

subject to certain constraints. Let

N = the number of customers,

%2N+l = the number of nodes, including the depot,
ti5j = the travel time between nodes i and j,

, T. = the duration of the jth leg of a route,
T T C T = (tij}, j = 1,2,...,2N,

4 WT i  the waiting time, from t = 0, the vehicle's

-1. departure time from the depot, until
customer i boards, and

0 RT i  the riding time of customer i.
.- Psaraftis' model incorporates the linear weighted objective

vl-.V
'.'.iv %(4 .38 )

MinimizeZu' 1, + W (a WT + (2 a I? T(438
* j =1I=

% %
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which contains two objectives, minimizing total vehicle

travel time to servic- all customers, and minimizing total

negative utility of customer waiting and riding.

His model incorporates three major constraints. Routes

must observe origin/destination ordering, and the route

must not have subtours. Vehicle capacity is explicitly

oserved. If customers are arranged in a list according to

the time of their service request, then, in the sequence of

pickups and in the sequence of deliveries, each customer

must appear in each sequence at a sequence position (SP)

V within the range LP-MPS ! SP LP+MPS, where LP is his list

position, and MPS is a maximum allowable shift in sequence

position. This constraint stems not from a desire to treat

customers fairly; rather, it is a necessary device to

prevent the DP model from indefinitely deferring a customer

because the travel time to serve him is high.

Psaraftis provides an excellent discussion of the com-

binatorics of Problem SVMRP, and of implementation issues.

His algorithm, though exponential (O(n 2 2N)), provides very

reasonable solution times for problems with N 8, a limit

* imposed by computer core storage limitations. However,

* this size limitation and the current lack of multiple vehi-

cle capability render the model incapable of solving Ver-

siins T:I and IV of the aeromedical model. In the future,

* research should be undertaken to incorporate the useful

features of the model (composite objective and ability to

W I*
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handle additional constraints) in a multiple vehicle frame-

work. Also, his techniques for dynamically altering routes

to accommodate requests received after a vehicle begins its

route are potentially useful in aeromedical airlift mission

management, to handle priority and urgent cases dynami-

cally, a problem we do not treat in this thesis.

4.4.1.2 Mixed Integer Programming. Sexton [SEXT79] includes

a new service requirement in Problem SVMRP: each customer

specifies a desired delivery time. Assuming no constraint

Von customer pickup time, he defines two causes of customer

* disutility. The first is excess ride time (ERT), the

difference between the time actually spent in the vehicle

and the travel time from his origin directly to his dest-

ination. Sexton defines delivery deviation time (DDT), the

difference between actual and desired delivery time, as the

second. If ERT + DDT is the total inconvenience of a cust-

omer (TIC), then his objective is to minimize total incon-

venience of schedule (TIS), the linear sum of all TIC's.

Unlike Psaraftis, Sexton does not consider waiting time

or vehicle capacity. His solution provides both the order

of service (route) and times of service for both pickup and

delivery for every customer (schedule). His heuristic

*. method uses two exact methods as subroutines, a special

case of the transportation model for routing, and Benders

mixed integer programming for scheduling. His major appli-

cation is also the dial-a-ride problem.

A20 %L
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In our formulation of the aeromedical problem we have

ignored delivery time as a service requirement, which

negates the value and applicability of Sexton's model.

However, time windows, such as airfield operating hours and

time limits on service availability (refueling, for exam-

ple) can arise, and Sexton's techniques are designed to

handle them. We recommend this for future investigation.

4.4.1.3 Other Methods. Because Problem SVMRP is directly

rplated to Problem TSP, which is NP-complete, no efficient

solution procedure is likely to be found for it. For that

reason, in order to provide any solution at all, let alone

an optimal one, researchers have paid increased attention

to heuristics. Psaraftis proposes three such procedures.

In each, he uses a simple total distance objective.

His goal is to develop a technique that, in its 'worst-case

behavior', comes within some acceptable range of the

optimal, say (ILh - L*I)/L* K, where Lh and L* are the

heuristically detemined and optimal path lengths respec-

tively, and K is a multiple of L*.

The first procedure [PSAR81] removes infeasible arcs on

* an unrestricted TSP tour:

Heuristic 1:

Step 1. Solve Christofides' (or any other
tour-generating) algorithm for 2N
points. Let T be the tour.

5L.6"
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Step 2. Pick any point in T as the starting
point. Construct a new path Ti' as

follows. Moving clockwise, visit each
node in T. If the node is legitimate
(any pickup point, or any delivery

\." point whose origin is already in
Ti'), connect it to the last legiti-
mate node. Continue until all nodes
are connected.

Starting Point

. + +3

N.C- +1 Path T'

.TourT

V Figure 4.25. Step 2: constructing T'.

Step 3. Repeat Step 2, for all starting
points i, and then proceed counter-
clockwise to construct T"

Starting Point

+3

' ..... +1 Path T"

S.. . Tour T

Figure 4.26. Step 3: constructing T".

Step 4. Select T*= min (TT

.•

.i i= 1,2 .... n

%0
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His second algorithm [PSAR8l], similar to one proposed

by Stein [STE1781, is based on the property due to Barachet

[BARA57] that TSP tours visit extreme points in order.

Heuristic 2:

Step 1. Form two tours, one with origins
only, and one with destinations only.

Step 2. Connect the two graphs to form one
tour.

The worst case behavior of the second method is K = 3.
4.

The third procedure, which he calls tree circumnavigaticn,

uses the TSP property that a TSP tour is a spanning tree

*with one additional arc. [PSAR82a]

Heuristic 3:

Step 1. Form the minimal spanning tree.

Step 2. Replace each undirected arc between
two given nodes with two directed
arcs in opposite directions between
those nodes.

*Step 3. Find shortcuts while circumnavigating
the tree to construct the tour T:

Figure 4.27. Circumnavigation shortcut.

'. Step 4. Use Heuristic 1 to find V.

.. Step 5. Search for arc changes to improve the
• solution, using a method such asLin's k-opt technique [LIN 73]
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In terms of performance, these heuristics have been

very promising in initial tests. With reasonable accuracy

and processing time, and procedural simplicity, these

methods offer excellent means for constructing initial

upper bounds. With further development and refinement,

these techniques should be the subject of additional

research to determine how well they can accelerate optimi-

zation algorithms.

4.5 A Single Vehicle Routing Algorithm for the Many-to-Many

Case. In this section we will propose an algorithm that

solves Problem SVMRP with a modified version of the

Bellmore-Malone-Murty algorithm. We will first demonstrate

that this algorithm is superior to modified versions of the

Eastman-Shapiro and Garfinkel techniques. After presenting

,S the algorithm, we will demonstrate its use in solving a

Version I aeromedical routing problem.

4.5.1 Infeasible Chain Elimination. In the mathematical

formulation of Problem SVMRP, we defined an infeasible

* chain as a path connecting two improperly sequenced origin

and destination nodes. This infeasibility can occur in a

tour of N 7 cities, or a subtour of is ? 3 cities.

* Figure 4.28 illustrates a tour with an infeasible chain.

TSP fathoming tests will fathom a subproblem with a

tour solution containing infeasible chains. Therefore, we
o '" need to modify TSP fathoming and branching rules in such a '

."p
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0t -2 S

-3 -1

6 4 S

Figure 4.28. TSP tour with an infeasible chain.
S

way that (i) infeasible chains are eliminated, and (ii) the

solution space is partitioned. The tour fathoming test can

be easily changea to detect infeasible chains, and all of

the branching methods described above can be modified to

eliminate them. We will show, however, that only one will

partition the solution space, and provide the most tightly

constrained subproblems.

An Eastman-Shapiro strategy, in which we prohibit a

different arc of the infeasible chain on each branch, will

produce the branching shown in Fig. 4.29 for our example

above. Clearly, both branches will eliminate the infeasi-

• ble chain, but will not partition the solution space. For
?.' ~X2 X15pl X6 = = x 1 can be

example, X0 2 =X 23  X3 1 x 1 5 :54 X4 6 X6 0

in both solution spaces (assuming predecessor branchings do

. . not prohibit any of the optimal arcs).

N N "
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k

x 51 =0 x 1 2=0

Q(
Figure 4.29. Eastman-Shapiro infeasible chain elimination.

If we use Bel!more-Malone-Murty branching, we will

partition the solution space. To see this, note the two

k

x51  x 1 2 =0, x 5 1 '=

Lm
Figure 4.30. Bellmore-Malone-Murty infeasible chainelimination.

assignment matrices that result. Subproblem 1 has the same

arc exclusion for both the Eastman-Shapiro and Bellmore-

Malone-Murty methods, while the additional exclusions in

the second column and sixth row due to the arc inclusion

X5 :s= 1 would not ue made by Eastman-Shapiro branching.

Subproblem 1 excludes any solution with x51 = 1, while sub-

problem m excludes all solutions except those with x5l = 1.

0? II;M a i
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0 +1 +2 +3 -1 -2 -3

0 M M M M

+1 M M

+2 M M

+3 M M

-1 M M

-2 M M

-3 M M

(a). Subproblem 1 arc exclusions.

0 +1 +2 +3 -1 -2 -3

0 M I M M M

+1 M M

+2 M O M

+3 M M

-i M M

-2 M n .0 M

-3 M M

(b). Subproblem m arc exclusions.

Figure 4.31. Bellmore-Malone-Murty arc
exclusions.

5.4 Garfinkel's method partitions the solution space, but

contains fewer arc exclusions overall because it does not

use arc inclusions. Again note the resulting assignment

-. . matrices for the two branches. The two branches either

.-. require or prohibit solutions with either X52 or x 5 3 = 1.

Comparing the Garfinkel strategy to the Bellmore-Malone-

Murty approach, we observe that although both partition Xk,

the latter introduces more exclusions. Because of this, in

.&ION
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A k

X 5 lX521 0 15 = X12 =X53=X50=X 5 6 =X 5 4 =0

1 m

Figure 4.32. Garfinkel infeasible chain elimination.

the algorithm to be presented in the next section, we will

use the Bellmore-Malone-Murty strategy for eliminating

infeasible chains.

0 +1 +2 +3 -1 -2 -3

0 M M M M

+1 M M

+2 M M

+3 M M

-1 M M

-2 00 M M

-3 M M
I

(a). Subproblem 1 arc exclusions.

0 +1 +2 +3 -1 -2 -3

0 M M M M

+1 M M 0

+2 M M
+3 M M

-lM M

- -2 M M

-3 M M

(b). Subproblem m arc exclusions.

Figure 4.33. Arc exclusions generated
by Garfinkel's method.

o NN
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One aspect of infeasible chains should be mentioned.

.n the fathoming test, the branching rule is to branch on

the shortest subtour or infeasible chain, whichever is

detected first, so that fewer branchings will be required

for each unfachomed subproblem. Of course, this does not

guarantee that fewer subproblems will be solved overall.

4.3.2 The SVMRP Algorithm. In the SVMRP algorithm, let:

B = the number of patients;

N = the number of cities including the depot;

C = the cost matrix [xij];

0 = the order vector where element i = +j if
city i is the origin of patient j, -j if
city i is the destination of j, and 0 if
i is the depot.

Cii C;-EK order feasibility vector where element i
= 1 iff node i is correctly ordered, and
0 otherwise.

BFSD = best feasible solution currently known;

CLUB = current least upper bound corresponding
to BFSD;

BFSD* = the optimal solution vector;

CLUB* = the optimal solution objective value;

P = the index of the last subproblem solved;

k = the index of the subproblem selected for

further branching;

AS(k) = the solution of assignment subproblem k;

-k the cost associated with AS(k);

S(i,j) the ]th successor of node i. (If i=l, and
j=2 in the path ((1,2),(2,3)), S(1,2)=3.

CLLB = mI"" """" " " " "
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Q = the queue containing active (unfathomed
and unbranched) subproblems in order of
non-decreasing values Zk;

E = the set of arcs excluded in subp.. lem k;

Ij = the set of arcs included in subproblem k;

The SVMRP Algorithm is as follows:

Step 1. [Initialization]. Initialize N and cost
matrix C.
If city d is the depot, then O(d) = 0.
If city j is the origin of patient i and
city k his destination, then O(j) = +i
aLd O(k) = -i.
Exclude arcs that are infeasible by
definition:

(-i,+i) = M
(0,-i) = M
(+i,0) = M.

Step 2. Form the tour T = ((0,+l),(+l,+2),...,
. (+B-I,+B), (-1,-2) ... (-(B-1)-B), (-B,0)) ?

Set CLUB* = Z0.
Set BFSD* = TV. 4

Step 3. Solve the modified assignment problem
AS(l).
Test AS(l):

a. If node i is the immediate
predecessor of the depot and O(i)
< 0, then CHECK(IiI) = 1.
Set j = 2.

b. If S(1,2) = 0 for any i, AS(l)
contains one or more subtours.

c. If O(i) < 0 and O(i) = -O(S(i,2)),
"a then AS(l) contains an infeasible
* chain.

Repeat steps 3(b) and 3(c) for
j=3,4,...,N-2.
If no subtours or infeasible chains are
found, set CLUB* = Z1, BFSD* = AS(l), and
go to Step 9.

* Set CLLB' = Zi, E1 = Ii = 0, and k = P=l.

Step 4. [Branching setup]. If k > 1 and the path

from the root node to subproblem k is

((l,il),(il,i2),...,(iq,k)), then for

j=il,i2,...,iq, define

V.N
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mj = the size of the smallest
infeasibility in subproblem j,

uj = the index v when subproblem j
was created;

vj = {rl,r2,...,rmj}, the set of the

smallest infeasibility in
subproblem j;

Lj =  {(rl,r2),(r2,r3). . ,(rmjrr ),

the set of arcs in the smallest
infeasibility.

Form Ii, = II (, (rw,rw+1) I W= .. .,Uj-1)

and Ell = El J ((rujruj+1 )};

if uj = Uj+i, Uj+j = 1.

Recursively form Ik and Ek.
Set v=l.

Step 5. (Branching]. Form EP+= Ek 'J U(rv,rv+,)}
and, if v > 1, IP+v = Ik u {(rj,rj+l)I

Include the arcs a i E I p+v and exclude

the arcs ai E Ep+v in C.

If IP+v n Ep+v * 0, P+v is bounded; go to

Step 7.

Solve the resulting MAP.
If the dual objective exceeds CLUB, P+v
is bounded; exit the MAP subroutine and
go to Step 7.

Step 6. (Bounding]. Determine the solution case:
a. :f AS(P+v) contains a subtour or

infeasible chain, save the
* shortest infeasibility, and

insert P+v in the active
subproblem list; if Zp+v < CLLB,
reset CLLB = Zp+v
Go to Step 7.

b. If AS(P+v) is a tour, and Zp+v <
0 CLUB, set CLUB = Zp+, and BFSD =

AS(P4-v).
If CLUB S CLLB*, the optimal has been
found; go to Step 9.
Otherwise, go to Step 7.

* Step 7. Set v V+l.
If v m go to Step 5.

75..If < k ,



336

Step 8. If Q = 0, go to Step 9.
Otherwise, remove the first subproblem in
Q, set k = P for that subprobiem, and go
to Step 4.

Step 9. Stop: BFSD* is the optimal solution, with
objecctive value CLUB*.

4.3.3 A Computational Example. To illustrate the use of the

SVMRP algorithm in solving the single-aircraft aeromedical

routing problem, consider the problem depicted in Figure

4.34, where the symbol +n designates a patient origin, -n

his corresponding destination, and 0 (Scott AFB) the depot.

Great circle distances are given in Table 4.3.
Sr

oTABLE 4.3

DISTANCESa BETWEEN PATIENT ORIGINS AND DESTINATIONS

To Patient Service Point

From Patient
Service Point -3 0 +2 +3 +1 -4 -1 +4 -2

Glenview NAS M 184 292 449 670 516 598 618 881

Scott AFB 184 M 195 310 540 357 514 434 697 r
Little Rock AFB 292 195 M 215 380 232 434 493 719

Whiteman AFB 449 310 215 M 288 200 566 787 790

* Offutt AFB 670 540 380 288 M 211 436 814 632

Ellsworth AFB 516 357 232 200 211 M 381 642 697

Buckley ANGB 598 514 434 566 436 381 M 295 224

Vance AFB 618 434 493 787 814 642 295 M 320

Altus AFB 881 697 719 790 632 697 224 320 M

aDistances are Jn nau1tical miles, modulo 5.

Source: Global Nav at:n and Planning Chart, GNC-2N,
Defense Mapping Aqency, , MO., 1968.

0
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In our first trial, we used (symmetric) distances in

nautical miles, a simple sequential upper bound

(0->+l->+2->+3->+4->-l->-2->-3->-4),

assignment relaxation lower bounding, and Bellmore-Malone-

Nutty subtour and infeasible chain elimination. The opti-

mal objective for the same problem without order restric-

tions (the simpler Traveling Salesman Problem) is 2130 -.

nautical miles, and the corresponding route is:

< .. 0->+3->+2->+4->-2->-i->-4->+i->-3->0. .

The TSP tour is infeasible because the stop at Altus (-1)
"p .

occurs before patient 1 is picked up at Oftutt (+1). With

Christofides-Balas lower bounding applied to the initial

*. MAP, the TSP optimal was found at the root node.

For the first trial problem, the SVRP algorithm gener-

ated initial upper and lower bounds of 3975 and 2015 miles

respectively. The latter is the initial MAP solution value

without Christofides-Balas lower bounding applied. The

SVMRP optimal objective is 2595 nautical miles, and the

route is:

k' " 0->+2->-2->+4->+3->+1->-1->-4->-3->0.

25 subproblems were created, including 2 feasible tours, 7

solutions containing subtours, 6 containing infeasible

chain solutions, and 11 problems that either exited the MAP

solution procedure when the value of the dual objective

exceeded the incumbent upper bound or were skipped because

of an arc inclusion-exclusion conflict.

" r

° %
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Two other trials depicted in Figures 4.35 and 4.36,

show the effect of different origin-destination pairings.

?The new labels are given in Table 4.4. The results are

summarized in Table 4.5. While it is difficult to explain

performance with just a few solutions, these results are

interesting in several respects. First, using a nearest

neighbor upper bounding technique which allowed only feas-

Lohly ordered selections yielded a much better initial upper

bound than the method of making all pickups first, then all

deliveries. Secondly, relatively few subproblems were

* solved, with a significant proportion either fathomed

because of an exclusion/inclusion conflict, terminated

early in the MAP procedure for excessive dual objec-tive,

V or eventually fathomed by the incumbent, the first of which

was found after solving relatively few subproblems. Third,

'the solution to problem II illustrates a fundamental

difference between TSP and SVMRP, namely, that SVMRP opti-

mal route segments can intersect, which will not occur in a

Euclidian TSP.

0 The SVMRP algorithm is designed to handle non-unique

origin-destinations pairs for different patients, as well

as cases where the depot is either an origin, a

, destination, or both. The latter case is actually simple

," to handle, since that service requirement cannot be

.nm.properly sequenced. Both situations occur frequently in

* actual route planning.

'.

-.4
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TABLE 4.4

PATIENT ORIGIN/DESTINATION LABELS

Node Labels

Airfield Problem
I II III

Glenview Naval Air Station -3 -3 +4
Scott Air Force Base 0 0 0
Little Rock Air Force Base +2 +2 +1
Whiteman Air Force Base +3 +3 -2

AOffutt Air Force Base +1 +i -3
Ellsworth Air Force Base -4 +4 -1

.A Buckley Air National Guard
Base -1 -1 +2

Vance Air Force Base +4 -4 -4
Altus Air Force Base -2 -2 +3

TABLE 4.5

O- SVMRP COMPUTATIONAL RESULTS

Problem

I II III

Bounding data

Initial upper bound 3975* 2815 2690
Initial lower bound 2015** 2130 2130
Optimal objective 2595 2595 2425
Initial lower gap 580 465 295
Initial upper gap 1380 220 265

Solution performance data

First subproblem with tour 11 16 18
Subproblems generated:

Branched by the
LIFO rule 3 1 1
Best bound rule 8 13 11

Exclusion conflict 5 7 3
Exceeded upper bound 6 6 11

during MAP solution 2 2 1
* Incumbent optimal 1 5 4

Fathomed by an incumbent 1 5 4
Total 25 34 31

V- *Sequential upper bound rule used.
**Christofides-Balas lower bounding not used.

...-1-
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4.4 Summary and Conclusions. In this chapter, we have shown

*w that the single-aircraft aeromedical routing problem can be
"wv,

V solved with a branch and bound algorithm that employs a new

technique for eliminating infeasible paths that violate the

many-to-many ordering restriction that origins be visited

before destinations. The method does not have the size

limit or unique origin-destination requirement of the

Psaraftis dynamic programming approach. Because the single

aircraft model is only one stage of the complete aero-

medical model, we have not attempted to generate optimal

* computer code, nor have we run exhaustive tests,

particularly since no comparative solution data exists.
A"."

Prof. Bodin used our data to run Sexton's algorithm without

time windows and obtained the same optimal solution in an

informal test. We strongly recommend further computational

research. Also, we have not considered other problem

characteristics, such as passenger priority and constraints

on vehicle capacity and route length, which are important

considerations in actual route planning and therefore

should also be investigated.

Overall, we can conclude that solutions to single

,vhicle, many-to-many routing problems of significant size

can be solved, with reasonable processing times. In fact,

-he number of subproblems required to solve the aeromedical

problem is less, in the tests we have run to date, than the

same problems without precedence relationships.
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ENDNOTES

1. Psaraftis (PSAR78] uses a weighted composite of waiting

and travel time to represent customer disutility, but no

multiple objective models have appeared in the literature.

2. We did not ignore some particularly powerful heuristics

and Lagrangean techniques. Indeed, techniques described by

Golden et al [GOLD80] provide initial solutions, improve

bounds, and find near-optimal solutions. A6 a matter of

emphasis, we are interested primarily in exact methods.

3. Murty [MURT76] solves the MAP, rather than simply

reducing the cost matrix, which (i), gives higher lower

bounds at the expense of increased computation, and (ii),

generates a complete, though possibly infeasible, solution.

The Little algorithm will not provide a solution until at

least n subproblems have been created, and then only if the

procedure creates n successive arc inclusion branchings

from the root node.

4. If x12 = 1, then if x 21 were allowed to equal 1, a sub-

tour would result. Therefore, the additional arc cut, x 21

= 0, is implied to preserve feasibility. In general, each

arc inclusion should also exclude the arc that would make

* the path containing the included arc a circuit.
.1'

5. the shortest subtour is the one with minimum cardi-

nality. If several subtours have the same cardinality,
0

.rhi-r.ril, c1 ct one. This rule of thumb produces the

0%

.1*-
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%1.V.

fewest subproblem branches, but there is no theoretical

evidence that it produces the fewest total subproblems for

the entire solution process.

6. Admittedly, Gillete's code can be significantly

improved. First, instead of exhaustively searching for the

next unfathomed subproblem to solve, maintain a stack

referencing unfathomed subproblems in ascending solution

objective value order. Second, at a small expense in solu-

tion time, a fast heuristic can provide an initial upper

bound close to the optimal (see [GOLD80]). And third, pub-

- lished AP algorithms are considerably faster than

Gillette's version of the Hungarian algorithm. [CARP80a]

SUsing Murty's [MURT76] labeling method, we eliminated a

major theoretical mistake in Gillette's algorithm that

caused it to cycle infinitely with certain data, and

greatly improved its efficiency.

7. To include an arc (i,j), all c. in row i and all c,. in

row j are set to infinity except cij. Alternatively, solve

* the MAP with row i and column j deleted, and set xij = 1.

8. The same xij'S will be equal to 1, Cpq' > Cpq if (p,q) is

the arc to be prohibited, and the objective will be equal

.'2.' ZNEW '

9. For arc (i,j), arcs (a,i) and (j,b) link with arc (i,j).

0 h., then, can be 0, 1 or 2.

0
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10. Their method is not restricted to asymmetric problems,

but they recommend the use of a matching algorithm to

replace the assignment procedure for the symmetric case.

11. Earlier, we discussed the distinction between

sequencing (or permutation) and scheduling problems. The

latter type explicitly considers time in addition to arc

weights. Restrictions such as desired pickup or delivery

times create scheduling problems. Treatments of the Dial-

a-Ride problem by Psaraftis [PSAR78] and Sexton [SEXT79]

explicitly consider time. In the following, we will

*restrict our attention to sequencing problems exclusively.

12. In other words, each origin has a unique destination

associated with it, and vice versa. We couid allow several

passengers to have exactly the same origin and destination,

if we do not have capacity constraints.

13. Christofides [CHRI75] refers to this as the open

routing problem, as opposed to the closed problem of

finding tours.

14. To insert node c between nodes a and b, replace the arc

(a,b) with ((a,b),(c,b)), in which a and c precede b.

• 15. Open tours do not return to the depot after the last

patient is delivered.

0m .°

0 o
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CHAPTER V

THE MULTIPLE VEHICLE, MULTIPLE DEPOT, MANY-TO-MANY

ROUTING PROBLEM (MVMDMRP)

5.1 Introduction. In Chapter IV, we completed the first two

versions of the aeromed model. In this chapter, we expand

Version II of the aeromedical model to handle multiple air--

A craft and then complete Version III development by incorp-

orating multiple depots. The last two sections present a

- ." computational example of the multiple depot algorithm, and

present algorithm extensions that observe origin-

. destination precedence relationships.

5.2 The Multiple Vehicle Routing Problem. The multiple veh-

icle routing problem (MVRP) is a straightforward general-

ization of the single vehicle problem. Gavish and Srikanth

define the simplest MVRP. the Multiple Traveling Salesman

Problem (MTSP), as follows:

"Given a set of n cities, find a set of routes for
-. m salesman starting from and ending at the base

city 1, such that each city (apart from city 1) is
visited by one and only one salesman." [GAVI80]

MTSP variations assume constant or variable values of m,

and may require the matrix C = [cij] to be either symmetric

* or asymmetric, or allow it to be either.

5.2.1 MVRP Problem Statement. Because the aeromedical prob-

lem involves a fixed number of vehicles and asymmetric

costs (flying times affected by winds), we assume that m is

0I
. . ..0
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constant and C =. .[ci1 can be either asymmetric i or symme-

tric in the following formulation:

Problem MTSP:

Find values of the variables X = [xij ] that

r

'V Minimize , \ c x r=m-j-n: (5. )L " J ' ]

r

subject to N x , (5.2)

r

x 2=_,..., r (5.3)

• J=l

X=[x lT (5.4)

X 0 or1 (5.5)

Golden et al [GOLD77] note that

Three different papers ([BELL71],[ORL074],[RUSS77])

published in 1973 and 1974 independently derived%equivalent TSP formulations of the MTSP and conse-
quently showed that the M-salesman problem is no

.. , more difficult than its one-salesman counterpart.

To obtain this equivalence, the cij in (5.1) are defined as

shown in Figure 5.1 for the MTSP. The first m-l rows and

columns are copies of row 1 and column 1 respectively.

A This creates, in effect, m-l duplicates of the original

depot. The (m-l)x(m-l) submatrix of infinite costs prohib-

its arcs between duplicates of the depot, which forces all

m vehicles to be used. 2 All other costs remain the same.

0%:.

0li
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1 2 . . m-I m m+l . . . . . . . . . m+n-i

1
2

Cij C' ij =Cij

C' ij Cij C jCij
rn-

%I..

= Figure 5.1. MTSP cost matrix.

~Constraints that prohibit subtours are similar for TSP

.and MTSP. Let nodes 1,2,...,m denote the m duplicates of

Sthe depot, 10 = (1,2,...,m) be the set of depot indices,

and N={l,2,...,m,m+l,...,r) be the set of indices for all ,

. nodes. MTSP subtour elimination constraints are [COLD77]

• (5.4a)
[X.: 1:V -X 1/6rerv Q C N- o }

" (5.4b)
I' I[X -1: \ X Q1 forpu rv'O-"Q CN-lot

00

(5.4c)
I.. II = [ ° I  Y, V: (n.-rn)X !5 n - rn- , ,ze/, t,j lcN - 10

1.. q2.2 MVRP Solution Methods. Table 5.1 provides information

"on MTSP research reported in the literature. our solution

S method most closely resembles that of Svestka and Huckfeldt

'% A' A'.
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"SVES73], which uses a Bellmore-Malone TSP branch-and-bound

pr:'cecire with three modifications. First they obtain an

initial upper bound heuristically from the root assignment

relaxation solution. Secondly, to branch a subproblem,

zhey >ise a modified primal-dual transportation algorithm to

exploit the fact that the solution of any parent problem is

a~l feasible for all of its subDroblems.

7he third modification interprets the assignment sl - "1

.icn obtained from the MTSP cost matrix. Suppose n=4,

M=2, and r=5. Three solution cases are possible (Figure

5.2). Cases I and III are (equivalent) feasible solutions

tnat would not require further branching, while Case II is

______.V an infeasible subtour solution requiring that the shortest

-... (disconnected) subtour not containing a copy of the depot

be branched. In general, all MTSP tours are feasible (Case

-), while all subtour solutions are either feasible (Case

,) or infeasible (Case III), depending on whether or not

every subtour contains a depot node.

• >vestka and -uckfeldt note in their article that the

presence of multiple vehicles does not increase solution

-ime; in fact, for problems of a given size, the MTSP seems

0 to converge to optimality more quickly. [SVES73] Intui-

-ey  appears that the feasibility of Case III solu-

.ons increases the likeiihood that a given solution will

r.t reed to be branched. However, in the absence of any

--- "h tical investiqation, the relative efficiency of TSP

........ . . .... .. . ..
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Case MARP Solution Interpretation

V3

3 2

2

Tours Feasible Tours

,ATQ>

II

-a.

Subtours Infeasible Subtours

11

22

• " -"Depot

0 I
* Sousma FPasblelour

A Depot

Souce ;VE73
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vs. MTSP algorithms for solving the same problems remains

an open question.

The Christofides-Balas bounding procedures discussed in

t he last chapter can be extended easily to the MTSP case,

orovided cutsets, coverings, and articulation points are

properly chosen. Only subtours that do not contain a depot

should be used. In Case II, Figure 5.2, for example, one

subtour, ((l,3),(3,2),(2,l)), is feasible, while the other

v is not. Only nodes 4 and 5 should be used to find reach-

able node sets to construct cutsets, and we should only

search for an articulation point for subtour ((4,5),(5,4)).

- 5.2.3 An MVRP Computational Example. For this example, we

changed the Gillette ten-city cost matrix from the last

chapter to make it correspond to Figure 5.1. The only

significant modification to the TSP algorithm necessary to

scive Problem MTSP is to restrict the branching routine to

select the shortest subtour that does not visit any copy of

the depot. In each iterative step, a solution is produced

that corresponds to one of five cases:

Case Solution Type

I Feasible (Single tour)
Ii Infeasible (Disconnected subtour(s))
Ill Feasible (All subtours connected)
IV Incomplete (dual objective exceeded upper

bound)
"V nfinite (Arc inclusion/exclusion conflict)

lob -'r, 'r ... 'r*. %

iL.~ . %.4
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The two additional cases (IV and V) result from

improvements to the Beilmore-Malone algorithm discussed in

the last chapter.

For three vehicles, we obtained the solution depicted

I
in Figure 5.3. Solution details are provided in Table 5.2

Fewer subproblems were solved (27 vs. 119) than for Problem

-.TSP, but the total distance of the optimal solution is more

than thirty per cent greater (3749 vs. 2855). Of those 27

solutions, the first 14 contained subtours. However, once

the algorithm found an incumbent optimal in the 15th sub-

problem, subsequent subproblems were either optimal (2

cases), terminated in the MAP procedure because the dual

objective exceeded the upper bound (9 cases), or excluded

because of an arc exclusion conflict (2 cases).

5.3 The Multi-Depot Routing Problem (MDRP). In the MVRP

model, we assumed m vehicles were available at a single I

depot. In that model the problem is essentially one of

-- creating a partition of the n patients and then

. constructing r routes. The multiple depot problem is

similar, in that each vehicle assigned to one of k depots

must be routed to service a subset of the n patients. In

this section, we will formally state the multi-depot

problem, discuss approaches reported in the literature, and

*44' then formulate a new algorithm for solving the problem.

€.*
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6 '

(2 13 141312 6 1

24 26

Figure 5.3. Solution tree for a 10-city, 3-vehicle problem.

5.3.1 MDRP Problem Formulation. For purposes of discussion,

we assume that:

1) one aircraft is assigned to each of the m
depots.

2) Each aircraft must be used, and it must start 0-
and end its route at its assigned depot.

3) A route cannot visit more than one depot. .

In the MDRP formulation, we still interpret r to be the

total number of stops, but we now define m as the number of .

......
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depots and n the number of patient origins and destina-

tions. Because we do not create duplicate copies of any

depot, we do not have to interpret the solution as we did

for Problem MTSP. However, if we relax the first

assumption, we would have to include Problem MTSP depot

copying and solution interpretation procedures.

Problem MDRP:

r

Ininimize Z V C X (r = ,n+n) (5.6)
- J

subject to: N X.= . j= 1,2, r, (5.7)

X- A' =1, (5.8)

. X IT (5.9)

A' =Oorl (5.10)

Constraints (5.9) are similar to those of Problem MTSP.

Let nodes 1,2,...,m denote the m different depots,

10=(l,2,.... ,m} be the set of depot indices, and N =

(l,2,...,m,m m+l,...,r) be the set of all node indices, where

r m + n. and destinations. Then, let

T = IX,1  K I 1 /reveryQCN-roy (5.9a)
- FQ JqQ

- I " X, !- Q -I f-oreve, Ot QCN-I (5.9b)I

I. {X -: - Y - (n-m)X% -5 n-m - . icj, iIEiN- (5 9c)

S....
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Subtour elimination constraints (5.9) eliminate two types

of infeasibility. [GOLD77] Fi-ure 5.4 shows the three MDRP

solution cases. Only Case III is feasible; the solution

Case MDRP Solution Interpretation

Infeasible

N". 2

Tour

II A Infeasible

2K

Subtours

[II Feasible

Subtours !

Figure 5.4 Solution Cases for the Multiple Depot Routing
Problem

bS
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consists of subtours that each contain one and only one

depot. Tours (Case I) are infeasible because they contain

more than one depot, which violates the stipulation that a

given aircraft depart and return to the same depot. Case

!I represents an infeasible solution, because at least one

(disconnected) subtour contains no depot nodes.

5.3.2 MDRP Solution Methods. Bodin et al [BODI83] discuss

three heuristic approaches to the MDRP. The first, the

cluster first-route second procedure, initially groups

nodes together into clusters around each depot, and then

* finds routes for each cluster using either heuristic or

optimal routing methods. Gillette and Jchnson [GILL76b],

for example, employ the heuristic Gillette-Miller sweep

algorithm (GILL74] to first find clusters, and then create

4" a set of routes through the clusters. Finding optimal

clusters is an open problem. [BODI83] The second approach,

called route first-cluster second, first establishes single

a TSP tour through all nodes, then breaks up the single

route into a set of routes that each include one depot.

The third, the Tillman-Cain savings algorithm [TILL72],

based on the well-known Clarke-Wright heuristic [CLAR64],

associates nodes with depots on the basis of savings. The

V concept of savings is as follows. If we assume that we

have as many vehicles as depots, then a feasible solution

serves each non-depot node via a round trip from the

nearest depot. If we can find instances where a three-arc
• k

0-

Iv 1 ..-
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route requires less distance to serve two customers than

4 the two rourid trips to serve them separately, we will save

- S1 ,2  = d0,1  + d0 ,2  - d1 ,2  (5.11)

where 0, 1 and 2 index the depot and the two customer nodes

respectively, and di, j is the distance from node i to node

The Clarke-Wright procedure can also observe

restrictions such as vehicle capacity, maximum number of

vehicles available (with variable capacities), and maximum

number of stops on one route.

For the multi-depot case, the savings feature must be

modified. To illustrate, suppose we have the following

-wo-city, two-depot problem.

3337

32 2d

,25 332

"4
"-'Figure 5.5. Two-Depot Problem.

-f we define Si ,Dk as the savings realized by including

stops at nodes i and j on a route out of depot Dk, then the

Clarke-Wright savings would be

J-- I



0 362

(I d -- d 1,2 d .33 + 25-.12 26
1.2 1.1 1. 1.2

I. d,, d, 2 - d '37 + 31 - 32 :3G

Servicing both points from depot 2 generates larger

"savings", but the total distance is greater because the

Clarke-Wright savings function fails to take into account

which depot is closer to the nodes to be served.

To correct this, Tillman and Cain define

dk = minjd}-dk ck - ,nm ..d.1, ( 5.12)

- as the 'modified' distance between depot k and point i.

* Then, by defining savings as

S k=dk +k - d (5.13)
tj I J

the modified distances reduce savings by the amount that

the actual distance from depot k to, say node i, exceeds

the distance from the nearest depot to node i. Computing

these revised distances and savings:

0%d, = 33 -- 33 -- 33) = 33

d 2 = :33 - (37 - 33) = 29
S!

S= 25 - (25 - 25) = 25

2 25 - (31 - 25) = 19
2

, - d2 -d,, : 3 25 - :32 26
.2 ,2

v ~ 2  (1 29 419 -:32 16
1 .2 1 2

4-.1
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A.- TABLE 5.3

TILLMAN-CAIN AND CLARK-WRIGHT SAVINGS

Servicing Depot

SD 1  D2

Round trip distances 116 136

Clark-Wright savings 26 36

Single-trip distances 90 100

'Tillman-Cain savings 26 16

Table 5.3 shows that the Tillman-Cain technique would save

ten more units than the Clark-Wright solution.

In their article, Tillman and Cain execute their proce-

dure as a heuristic. While they claim that an optimal sol-

ution could be obtained, we have not seen any results

reported in the literature. Because such restrictions as

the number and capacity of vehicles can be explicitly

handled, their method is potentially useful for solving

problems more complex than the simple MDRP, and as a

*' heuristic upper bounding device in optimization algorithms.

We propose a new procedure for solving Problem MDRP

using Bellmore-Malone methods to branch the shortest sub-

tour that does not contain a depot (Case II, Figure 5.4),

or a tour (Case I, Figure 5.4). Problem MDRP is obviously

similar to Problem MTSP, but does not require depot

copying, and hence, does not require a solution interpre-

tation procedure.

r o
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5.3.3 An MDRP Computational Example. For this example, we

use the following distance matrix:

. ASF 1 ASF2  1 2 3 4 5 6

ASF1  M M 33 45 32 68 25 20

ASF 2  M M 37 27 25 24 31 56

1 33 37 M 15 14 60 32 48

- 2 45 27 15 M 16 51 36 58

3 32 25 14 16 M 46 21 42

4 68 24 60 51 46 M 46 65

5 25 31 32 36 21 46 M 24

6 20 56 48 58 42 65 24 M

Figure 5.6. Six-city, two-depot problem.

Source: [TILL72]

Our branch and bound algorithm generated the solution

depicted in Figure 5.7 and the results shown in Table 5.4.

Twenty nine subproblems were solved; only nine required

-, further brancning. Of those nine branched, Christofides-

Balas lower bounding did not provide significant improve-

ment. Gaps between MAP optimal solutions and actual MDRP

optimal were only reduced nineteen ?er cent on average.

5.3.4 MDRP with Multiple Vehicles (MDMVRP). Relaxing the

MDRP assumption of a single aircraft at each depot to one

4- that specifies a given number at each depot (not neces-

sarily the same number) does not require extensive algo-

rithm modification. Rather, by using the depot copying

feature of the MTSP model, and by enforcing the MTSP feasi-

bility criterioni that a feasible subtour must depart and

-.

," " ++ : . -.+'+ ',. , ,.P' ' " * .,+ '.. ,,,,., ,. ,.,. ,, +' . +., ',,,- -+ N -,. . -.,.+,.<+.,.,,+.+ ..'+'
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Si-.

2 3

...

5,.22 23 24 25i 14 (15 16 17 28)
.°

-' ' Figure 5.7. Solution tree for a 6-city, 2-depot problem. ,

. return to a copy of the same depot, solving problem MDMVRP

• is straightforward. Only minor changes in bookkeeping
steps and infeasibility testing are needed. If the number

- ot aircraft assigned to a depot is to be determined, then a

, new procedure must be devised.
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5.3.5 MDRP with Precedence Relationships (MDMRP). With the

introduction of precedence relationships, Problem MDRP must

be changed to include order as a feasibility restriction.

Since MDMRP is a multi-depot problem, only three solution

cases are possible and only one case is feasible. Further,

as Figure 5.8 illustrates, two additional infeasibilities

can arise because of precedence.

ASF1  -2

ASP2

-3 
\S

Figure 5.8. An MDMRP solution with precedence
infeasibilities.

The first infeasibility arises when different aircraft

serve the origin and destination of a patient, assuming no

travel between depots. In the example above, the aircraft

serving ASP1 visits patient 2's origin, while the second

aircraft visits his destination. To eliminate this first

infeasibility, we considered two branching strategies.

The first approach (Figure 5.9) is to solve two sub-

*problems. One excludes the patient's origin noce from the

S
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(ASF1,+2),(+2,ASF1 ), (+l,+2 (ASF2 ,-2),(-2,ASF2 ),(+2,-2)

(2, i) ,(+2,-i), ,-l+2) (-3,-2) , (+2,-2) , (-2,+3)

a b

Figure 5.9. MDRP incomplete service exclusion branching.

subtour in which it occurs, and the other excludes his

destination node. Arcs excluded on one branch are allowed

on the other, and the arc exclusions clearly eliminate

these two subtours from descendent subproblems. However,

if we examine the pattern of exclusions closely, we can see

that this branching does not partition the solution space.

Given the following exclusion matrices, the solution

ASF1 -- > +4 -- > +3 -- > -3 -- > -4 -- > ASF

ASF 2 -- > +2 -- > -2 -- > +1 -- > -1 -- > ASF 2

is in both subspaces, so this method does not partition.

To partition the solution subspace, we must ensure that

a chain servicing a patient contains both his origin and

destination nodes. (We consider the additional requirement

of chain feasibility for origin-destination order below).

The shortest of the two chains in Figure 5.11 can be elimi-

nated by excluding arc (+2,-i) on the left branch and

including it on the right, guaranteeing a partition by mut-

uU&I exclusion. The two arc cuts prohibit the subtour
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ASFI ASF 2  +1 +2 +3 -1 -2 -3

ASF1  O 0 M O O c

ASF 2  0 00 00 0o

+1 C 0 C M

+2 C 0 M C M

+3 O O0

-1 0 M

-2 00 O

-3 0 O

(a) Arc exclusions for subproblem a.

,.., ASF1 ASF 2  +1 +2 +3 -1 -2 -3

* ASF 1  0 00 M 00 0

. ASF 2  0 00 0 0

+1 0 00 O M

+2 C 0 M 0

+3 C 0 0 M

¢-- 1 OD M 0

-2 M O M 0 M

-3 0 M

(b) Arc exclusions for subproblem b.

Figure 5.10. Non-partitioning exclusions.

* containing the chain in descendent subproblems. This sec-

ond branching scheme will not force nodes +2 and -2 into

the same subtour in descendent subproblems. Rather, it

* only guarantees that a particular incomplete service chain

will be prohibited. The same patient may be incompletely

.1 served in descendent subproblems, but the incomplete ser-

vice chains must be different.

% .
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Chain Infeasibility

+2-->-I-->ASF1 Missing node -2 (destination)
between the patient's origin and
ASFI.

ASF2--->-3-->+3-->-2 Missing node +2 (origin) between
ASF 2 and the patient's destina-
tion.

Figure 5.11. Incomplete service chains.

(+2,-i) (+2,-1), (-1,ASF1 )

Figure 5.12. Incomplete service partitioning branching.

Precedence infeasibilities in Problem MDMRP, the second

kind of infeasibility that can arise, are treated in

exactly the same manner as in Problem SVMRP. The shortest

infeasible chain in which an origin and destination are not

in order is branched. For example, if the solution

ASF 1 -- > +4 -- > -3 -- > +5 -- > +3 -- > -5 -- > -4 -- > ASF1

ASF 2 -> +2--> -2 -- > +1 -- > -1 -- > ASF2

occurs, in which patient 3's origin is visited after his

'V destination, the infeasible chain ((-3,+5),(+5,+3)) would

' be branched. Both types of infeasibilities can appear in

the same solution, in which case incomplete service
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branching should be used. (Order infeasibility cannot be

demonstrated in Figure 5.8 because a subtour cannot contain

an infeasible chain if N is less than 3, by Lemma 4.)

5.5.6 An MDMRP Example. To demonstrate the MDMRP algorithm,

consider the single aircraft problem used in the SVMRP

computational demonstration in the last chapter (Figure

4.34). Let Scott AFB and Buckley ANGB be Staging

Facilities 1 and 2 respectively, and designate Wright-

Patterson AFB as the destination of patient 1. Figure 5.13

depicts the resulting MDMRP solution found by the MDMRP

algorithm. Although the destination of patient 2 is closer

to the route flown by the aircraft serving ASF2, the cost

of adding both the origin and destination of patient 2 to

that route is substantially greater than the savings
a-,

realized by deleting those stops from the route serving

ASF 1 . This reflects a major problem stemming from the

assumption that routes only transit a single depot: the

distribution of origin and destination points can cause

aircraft routes to overlap regions. When the origins and

* destinations are in different regions, this procedure is

ineffective, particularly when the regions are non-

contiguous. As we will see in the next chapter, a differ-

* ent technique must be used to handle interregional trans-

fers. Even then, this procedure can be used to find routes

for adjacent intraregional problems, to check for situ-

* ations where crossing boundaries can save travel distance.
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5.4 Multi-depot, Multi-vehicle Routing Problems with

Precedence Relationships (MDMVMRP). By combining the

solution procedures for Problems MVRP and MDMRP, the

Version III model can be solved. Specifically, Problem

MDMVMRP requires (i) the creation of duplicate depots and a

test to ensure that any subtour contains a copy of a depot

to handle the multiple vehicle aspect, (ii) the restriction

that any tour is infeasible, to satisfy the multiple depot

routing feasibility stipulation, and (iii) the ordering

restriction to satisfy precedence relationships. Figure

* 5.14 illustrates the idea that all three types of infeasi-

bility that can occur in multiple depot, multiple vehicle

.4. problems with ordering precedence relationships. The situ-

ation labeled A is incomplete service to patient 2. Situa-

tion B is a violation of origin-destination ordering, and C

contains a disconnected cycle.

In solving the MDMVMRP problem, ten different solution

types can be found, not counting those special cases in

"A which the dual objective of the MAP exceeds the upper bound

before MAP optimality, or there are arc inclusion/exclusion

conflicts. Table 5.6 shows the recommended branching5

procedures for the various possibilities. Since a tour

calls for one aircraft to visit all nodes, incomplete

patient service in a tour is impossible by definition;

therefore, a tour will fall into two cases only. And,

since a tour is infeasible by definition, Table 5.6 calls
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-5o

3 B9I

ASFi ASF2

p..

-26

-6

'a

%*b

-9-1

%' Figure 5.14. An MDMVMRP solution with three '
"" in feasibilities.-

for the shortest infeasible chain to be branched, if one

~occurs in the tour, or to branch the entire tour otherwise.

Before we conclude our discussion of the MDMVMRP ,

algorithm and Version III of the aeromedical planning

-' modei, we shouid address one other assumption we have made,

S I

'i-" that stops are either depots (staging facilities) or the

€i inique origin or destination of a single patient. As we ;

i' ',saw in the empirical data in the second chapter, airfields

l'ot

... ,
i "

a) p.
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TABLE 5.5

MDMVMRP Solution Procedures

Precedence Infeasibility Resolution

Routing Both Neither
Solution Incomplete Infeasible Infeasible Infeasible

Type Service Chain Structures Structure

Not Branch Not Branch
Tour Applicable Infeasible Applicable on Tour

Chain

Branch Branch Branch Branch

Infeasible Incomplete Infeasible Incomplete Shortest

Subtour(s) Service Chain,or Service Infeasible
Chain Infeasible Chain Chain

Subtour

Branch Branch Branch
i Feasibie Incomplete Shortest Incomplete Feasible

Subtour(s) Service Infeasible Service
Chain Chain Chain

may be all three types of stops on the same day,

particularly the staging facility bases.

-2 +2
+ 3 +2

___-__ _( I )

-Arc cut

+4I +
-4

++-4S+4 -4+4, D

•.,, ) (III) !-4

Figure 5.15. Non-unique points.

0 .. .. ,
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Three cases are shown in Figure 5.15. In the first, if

one of two non-depot bases is both an origin and a destina-

ion, the node is replicated as shown, and arcs of zero

iength connect the two replicas. In the other two cases,

when an Driqin or destination is also a depot, we cannot

exclude arcs as we can when the depot is not an origin or

destination. We could also use replication, but that is

unnecessary if the infeasible chain test is modified to

account for the fact that the depot is a service point.

5.5 Summary and Conclusions. We have shown that the single

vehicle procedure can be extended to handle multiple

vehiicles, multiple depots and origin-destination precedence

relationships. Tests have only been consistently

successf',l on small problems (up to 50 nodes); in one using

84 bases, five depots, and a single aircraft at each depot,

the algorithm would not converge in 300 seconds of CRAY-lS

CPU time, although the optimality gap was less than 7 per

cent. Additional research is needed to increase the limits

o he method. Using the Tillman-Cain procedure and the

modifications made by Golden, Magnanti, and Nguyen [GOLD77]

to quickly generate good upper bounds is being explored.

6 As we noted, patient origins and destinations in

different regions will limit the effectiveness of the

MDMVMRP algorithm. However, it can still be useful in

pointing out non-obvious instances where an aircraft from

Ns P'
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one region can serve a patient in another, when extending

its route requires less travel time than using the aircraft

serving that paJLient's region.

ENDNOTES

In virtually all asymmetric cost solution methods,
" ,,

symmetric costs can also be used. The reverse is generally

not true. A good example is the method proposed by Gavish

and Srikanth; symmetric costs allow them to use a deriva-

tive of an efficient greedy minimal spanning tree algo-

rithm. Otherwise, they would have to use a less efficient

0minimal rooted spanning arborescence algorithm.

2. Other formulations treat m as variable. Bellmore and

Hong [BELL74] use a fixed charge method to incorporate

variable m, while others treat m as a parameter to be

vi varied over different executions of a fixed m model.

3. Svestka and Huckfeldt claim that only i/nth of the work

is required to solve an n-city subproblem by using the

final reduced costs of the parent problem optimal and new

arc exclusions and inclusions, rather than the original

costs. [SVES73] The new optimal is often found after one or

two row and column reductions and an allocation step.

4. We relax this assumption in the next chapter.
-'

5. If multiple infeasibilities occur, treating the one that

* results in the fewest branches is the rule of thumb we use.

-,

I-'
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CHAPTER VI

A MECHANISM FOR AEROMEDICAL TRANSPORTATION PLANNING

The night sky is a model of the cosmos that never, ever existed; all
those points of light were generated at widely different times. But we
use this model without even noticing, just as we hold up notions of
religious or plotiical "truths" that are the products of models having
a hopelessly low power to discriminate and hence to explain.
Stafford Beer

6.1 Introduction. In this chapter, we will extend the muit-

iple depot, multiple aircraft, mixed service model by

incorporating three additional characteristics of the DOD

aeromedical transportation problem: incomplete or partial

service (not visiting both a patient's origin and destina-

tion on the same route); regional organization; and routing

restrictions. With these extensions, the Version IV model

corresponds to specifications given in Chapter III. These

properties are particularly difficult to include in the

-A* model because they greatly complicate the problem structure

we were able to exploit in the first three versions. We

will develop the model to help planners produce daily

mission schedules that improve patient service, by reducing

the time patients remain in the aeromedical system and

routing costs. Using historical data, future weekly

regional service can also be planned. The method has the

troublesome aspect that it utilizes perfect knowledge of

all demands for a week, and past data from non-optimal

system behavior to plan optimal future behavior, but the

purpose is to show insights into better opportunities for

Ile recource use from which planners can learn.'I
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6.2 Modeling Three Additional Patient Movement Problems. In

the last chapter, we assumed that aircraft were assigned to

specific depots, that every aircraft mission began and

ended at the same depot, and that missions did not transit

other depots. We also assumed no limit to the number of

flight segments in a single mission. And, we assumed that

a transfer had to be completed on the same mission.

However, the actual patient flows we analyzed in

Chapter iI make these assumptions indefensible. Because of

operating rules that impose a maximum crew duty period to

avoid crew fatigue problems, the number of flight segments

in a mission is limited. The number of missions each day

is constrained by aircraft availability. On certain days,

particularly Thursdays, more stops are required to meet

.every transfer demand than can possibly be made, even if

the maximum allowable number of segments are scheduled.

Number of Distinct
Service Points Frequency

1-10 2
11-20 16

21-30 13
31-40 5
41-50 10
51-60 33
61-70 12

Assuming that six aircraft are typically available and the

maximum eight stops are scheduled on each mission, the num-

ber of service points that would have to be visited at

least once to provide same-day service exceeded the maximum
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number of stops possible in over half the days we examined.

(The maximum number of patient service points that can be

visited is usually less than 48, when the movement require-

ments force different missions to visit some of the same

points.) In this section, we will address the resulting

problems of incomplete service, transfers, and the require-

ment to periodically rotate the aircraft through the cen-

tral base for crew changes and aircraft maintenance.

6.2.1 Incomplete or Partial Service. Both the single and

multiple depot models moved patients from their origins to

the destination medical facilities on the same aircraft.

Doing so implicitly assumed no restrictions on aircraft

availability, route length, or maximum number of stops on

any route. In effect, these were single period problems.

With the operating restrictions given in our discussion of

the system's environment, moving every patient on a single

flight from origin to destination, providing what we have

defined as complete service, is usually impossible.

* Recognizing this, DOD stipulates maximum time criteria:

. Required Required

. Patient Pickup Delivery

Category Response Response

6 Routine < 72 hours after < 72 hours
movement require- after pickup

Poiyent validation

Priority 24 hours after < 24 hours
validation after pickup

1' Urgent Immediate Immediate
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DOD intended that these response time "windows", between

receipt of a movement requirement and patient pickup, and

between pickup and delivery, allow flexibility and limit

how long service could be deferred or delayed.

In effect, however, service time stipulations greatly

complicate patient movement decisions. Figure 6.1 shows

v all possible decision combinations for routine patient

movements that do not violate DOD guidelines. Five basic

decisions are involved:

Label Explanation

1. Defer Both Pickup Defer pickup. (Pationt
and Delivery. remains at his origin

until the following day.)

2. Pickup and Deliver. Provide complete service.

3. Pickup, Defer Pickup patient and take
Delivery. to an ASF for first over-

night stop.

4. Defer Delivery. Leave patient at the same
ASF or move to another ASF
for another overnight stay.

5. Deliver. Move patient from the ASF
to his destination.

As often happens, the price of flexibility is increased

A complexity and reduced service quality. The twelve

distinct paths in the decision tree are for one patient;

decision makers typically handle from 20 to over 100

patients each day. The presence of alternatives may influ-

ence them to "satisfice", when a better schedule might

afford more direct service for the patient. Eleven
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intermediate states in the decision tree require a delay at

the patient's origin or overnight care at an ASF. The

longest path could mean six days in the system.

0

Dayl1/ 1

1 2 3

Day 2 5 4 2 3 1

Q 5 6 7 8

Day 3 5 4 5 4 2 3

9 10 11 12 13 14

* Day 4 5

15 16 17 18 19

Day 5

20 21 2

Day 6

23

Figure 6.1. Patient service decisions.

6.2.2 Modeling Partial Service. The most important change

introduced by decisions to defer pickup or delivery is the

creation of multiple time periods. Let Xijk = 1 if arc

(i,j) is traveled in period k, and 0 otherwise, where i and

j index patient origins, destinations, and ASFs. In the

following illustration, let 1 index one patient's origin, 2

his destination, and day 1 be period 1. To extend our

assignment problem-based formulation, let Yikl = 1 if the

patient's pickup is deferred from period k to period 1, and
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Xill Xil2 Xi13'I

\Y112 Y123

Xlji X1 j 2  Xlj3

Xi 2 1  xi22 xi23 xi24 Xi25 'i26

'X2j1 x2j2 x 2 j 3  x 2 j 4  x2 j5 x2j6

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Figure 6.2. Routine patient service over time.

0 otherwise. Let ZikI = 1 if the patient's delivery is

deferred from period k to period 1, and 0 otherwise. Fig-

ure 6.2 depicts the three types of decisions, where the

vertically oriented arrows represent aircraft flight seg-

ments into and out of locations 1 and 2, and the hori-

zontal arrows the two types of deferment decisions. That

is, the flight segment variables represent routing deci-

sions within the period, and the deferment decisions are

the linkages across time periods.

We can now explicitly formulate the single patient,

multi-period service problem. Find values of the vari-

ables Xijk' Yik1I and Zikl that

6I
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Minimize i - / Ik! IkIC xi )j (6.0)

J k I

subject to: N' I + Y 11 (6.1)

- Ij 1 112 (6.2)

, i21 +z112 (6.3)

S2j 1 +z112 (6.4)

z~ 11 !5+11 (6.5)

123 ~123(6)

I... ~123 2123 *112 ~112(67

- ,1 2 Y112 (6.8)

Xi~ 1 ~k2,3 (6.9)

X2k 2j k ~ ,.,, (6.10)
Jl

* .L- 2j~ 2 123 112 ( .1

x2 2f3 +z134 212 (6.12)

'x 24+' z45z13 (6.13)

x-2j45+z 5 145 13414

* 2134 z 12:1 (6.15)
x j3 = 1'23 (6.16)

J=
1

x j6 (6.17)
J ~

p.where a1 and j3are weights assigned to pickup delays and

overnight stops respectively. Constraints (6.1) through

(6.5) require that on day 1: patient 1 either be picked up

or deferred (but not both) (constraints (6.1) and (6.2));
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patient 1 should either be delivered or his delivery should

be deferred (constraints (6.3) and (6.4)); and if his

pickup is deferred, his delivery may be deferred, but not

the converse (constraint (6.5)). Constraints for day 2,
%* %

(6.6) through (6.11), for k=2, are similar, but also depend.

upon decisions made for day 1. For example, (6.8) requires

that patient l's pickup either be deferred or made in
'S period 2 iff his pickup was deferred in period 1; if it was

not deferred, the right hand side would be zero and both

options in period 2 would automatically be zero. On day 3,

the option to defer pickup is absent, so that constraints

for days four through six refer only to delivery options.

Expanding the formulation to more than one patient

would require the use of another summation in the objec-

* tive, and a separate set of constraints for each patient.

In addition, order and subtour elimination constraints

would be needed to ensure route feasibility. With 22 con-

straints per patient, and 400-600 distinct patient move-

ments per week, the number of constraints would be very

large (12,320, assuming an average of 560 from the 90 day

period we observed), even without the additional subtour

and order restrictions. With this size, an integer LP
\b"

(ILP) formulation of this problem would be impossible for

current state-of-the-art computer codes to solve.

The assignment formulation is still incomplete,

however, because it lacks a very critical linkage, between
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routes that pick up a patient in one period and deliver him

in another. In the case of single period routes that

provide complete service, the identity of the patient is

not important. However, in multi-period problems, we have

no explicit link between the end point of the route that

picks a patient up and one that delivers him. We could

test for the existence of a path between the end point of

the former and the beginning of the latter. But, even if

that connection exists, it may require the patient to

remain in the system for an unecessarily prolonged time.

* The reason is that the assignment formulation will avoid

deferments, with suitable choices of weights on the defer-

ment variables, but since time spent in staging facilities

is not explicitly modeled, that time is not minimized.

The problem is that the assignment formulation chooses

* the routing network, and not how the patients move (or

flow) over network arcs. In single period problems,

choosing only those arcs that force flows between arcs in

*correct order allows us to ignore indivdual patient flow,

so we need not be concerned with patient identity. In

multi-period problems, with patients needing more than one

flight to reach their final destinations, we have to be

concerned with patient identity, at least by groups with

common origins or destinations, and use both routing design

and flow constructs. After introducing two other compli-

cations, we will return to this issue.

V
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6.2.3 Regional Organization and Aircraft Routing

Restrictions. WE introduce these complications together

because they are closely related. With multiple regions

and a significant number of interregional transfers, the

restriction that aircraft begin and end missions at the

same staging facility changes to the stipulation that the

end points be any staging facility, but not necessarily theN

same one. We then have another problem to resolve, that

with one central base for aircraft maintenance and crew

basing, we need to ensure that the aircraft periodically

* cycle through that base. (The unwritten rule is once every

one to two days.) Finally, each mission is limited to

eight stops, unless bad weather reduces that figure to

seven. And, the number of missions is restricted to seven,

with six desirable.

Figure 6.3 illustrates a simplified multi-regional

. problem with seven type of patient transfers, based on (1)

whether the origin and destination are in the same regions

and (2) node type (origin or destination). The attributes

of each type are given in Table 6.1. One transfer (#7)

S.: involves non-adjacent regions, which could create a separ-

ate category. However, this rarely occurred in the actual

Iata; most transfers were like those of patients #5 and #6.

Assuming that the maximum number of stops is six, then

if depot #1 is the starting point, the aircraft stopped at
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Figure 6.3. Multi-regional patient service.

Depot 2 after six flight segments. On the second day, six

stops were again made, and the aircraft and crew returned

.5.

to the central base. This example meets the desired goals

of using all but not more than the maximum number of stops

on each mission, and returning to the central base period-

U' ically (two to three days typically).

We have not seen this problem in the routing and

distribution literature. Lokin [LOKI781 developed

*procedures to solve traveling salesman problems with stops

occuring in clusters that must be served contiguously

*i before other other clusters, and Cullen, Jarvis and Ratliff

[CULL81 use center-of-mass techniques to find origin and

- destination clusters. Only Reufli [RUEF71] explicitly

% I
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TABLE 6.1

A MULTI-REGIONAL PATIENT TRANSFE-.

Patient Transfer Node Types

Number Node Locations Origin Destination

I Non-Depot Non-Depot

2 Same Region Non-Depot Depot

3 Depot Non-Depot

4 Non-Depot Non-Depot

5 Different Depot Depot

6 Regions Non-Depot Depot

7 Depot Non-Depot

considers regional organization, and then only in a fixed

transshipment network context in which routing is not

considered. Regional organization could be a natural way

to decompose problems, but in the aeromedical system, more

than half of all transfers are made across regional bound-

aries, which greatly reduces subproblem separability.

To accomodate the aircraft routing limits of maximum

route length, an assignment-based formulation can be

* changed by adding a restriction that the sum of all arcs on

a route be less than the maximum However, we have not

explicitly represented the concept of -misssion. Bodin et

al [BODI8I] do this by using variables xij k, where k is the

index of aircraft k. Route length limits convert problems

*-. into the general vehicle routing problem. Christofides et

5. al [CHRI81] claim that the largest problems solved exactly

%
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with such additional constraints have only 25-30 stops and

1a single depot. Therefore, it seems unlikely that

assignment methods will fare well with up to 7 periods, 6

depots, and up to 100 stops in each period.

6.3 Methods for Solving Multiperiod Aeromedical Routing

Problems. At least two research efforts have addressed the

multi-period problem. We discussed Swoveland's multi-

period, multicommodity, production-distribution research in

the Last chapter. [SWOV71] His problem did not include

routing concerns. Russell and Igo [RUSS77] devised heur-

.stic methods to assign service points to specific days of

the week, and then used single period routing methods to

find routes. In their formulation, the number of times a

-oint is served is fixed in advance, the time between

visits can be specified, and specific or permissible ser-

vice days can be stipulated. They devised one heuristic to

cluster points with the same frequency based on proxim. y,

and two heuristics to create routes through clusters. One

uses multi-depot exchange procedures based on Lin's k-opt

method (LIN 731 for problems with up to 300 stops, and the

second a modified Clarke-Wright savings procedure for lar-

-'. ger problems. Russell and Igo were only concerned with

pure delivery problems, and not the many-to-many case.

The most promising approach is to consider network

routing design and individual patient flow planning simul-

.- taneously. Currently, problems of the size involved in

_ ,.)
d%

0o
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finding a weekly optimal schedule that minimizes the combi-

nation of patient travel cost (total individual travel

time) and network operating cost (total aircraft time or

distance) are beyond the capacity of present algorithms.

However, parallel efforts to develop efficient routing and

multicommodity flow models, using the resource-directive

decomposition technique described earlier, coupled with

supercomputer capacity and speed, may realize that goal.

The fundamental change to our assignment-based formu-

lation is to consider patients with a common destination as

* a commodity. (We use destinations because of the concen-

tration of flows from relatively more origins to fewer

destinations we observed in Chapter II). As before, let N

be the service points in all demands for one week; the same

- point on a different day is notionally a different point.

Also, assume we have replicated the depots (staging facil-

ities) and nodes that are both origins and destinations for

different patients. Rather than allow all arcs between all

nodes, let the set of arcs A consist of all connections

between nodes in the same period, provided arcs are less

than the maximum aircraft range (assume 1800 nautical

miles), and do not directly connect a patient's destination

* with his origin. Let j represent the arc (i1 ,i2 ), in stan-

dard node-arc incidence notation.

Let K be the number of different commodities (patient

destinations). For a weekly problem, the 54 bases that
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explained over 99 per cent of all origin-destination

pairings would adequately represent all service points. To

evaluate additional stops (e.g., the 21 not currently

served that planners have been requested to add), that

number could be increased, but the number of commodities

directly affects problem size and must be limited to the

minimum necessary to represent the movement problem. Let

rik (> 0) be the number of patients to be moved from node 

to the destination k; let r be the vector of movement

demands from all origins to destination k. (Irki would be

* the demand at node k.) If we do not visit both the origin

and destination nodes on the same day, thereby deferring

service, we need to create deferment arcs from those nodes

to replicates in subsequent time periods (creating them if

they are not in the movement requirement node set for those

days; as transshipment points, they would have neither a

3upply of nor demand for commodity k). Movement precedence

presented by not allowing priority patient origins or

s-:nations deferment arcs. Because urgent patients are

%not routine)y scheduled by advance request, we are not

considering them in daily and weekly route planning.

Let cj be the aircraft flight time between nodes i and

,x~ the decision to include arc j in the routing network,

fk the flow of commodity k over arc j, and F. the flow

cost of one unit over arc j. For the deferment arcs, F.

could be set to, say, 12.0, representing an overnight stay

oPo
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at an ASF or a one-day pickup deferment. One important

-,issue we have not yet raised is aircraft capacity; let Uj

be the total capacity of arc j for all commodities. In our

problem, U typically is the maximum capacity of the C-9

aircraft, which is 40 patients. There are other capacities

that we will describe later.

A The general multicommodity problem formulation is given

as follows:

Minimiz kfk + c x (6.18)

jk

subject to A rk (6.19)

dN 
(6.20)L' ; C = U jE A

k=1

. - 0, (6.21)

where constraint (6.19) requires that all commodity move-

ment requirements be met, (6.20) restricts arc flow to a

specified limit, and (6.21) ensures that all flows are

strictly non-negative. Magnanti and Wong [MAGN84] describe

this linear multicommodity minimum cost flow problem with

fixed charges as one combining both network design (in the

.1 ; choice of variable xj values) and optimal commodity flow.

As such, it has the potential to incorporate the concerns

of both patients and those who pay for their transportation

costs, since it will minimize both aggregate travel time

and total routing cost.
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Success in solving multicommodity problems is limited

at best, and even less so in the fixed charge case. But,

of particular interest to us here is the work of Ali et al

[ALI 81] that we described in Chapter III. They attack the

problem by solving it in two phases. First, they eliminate

'h fixed charge portion of the problem, and solve a

simpler multicommodity minimum cost network flow problem to

which the following additional constraints have been added:

N (6.22)
- I

k-i

A V 0, (6.23)

which requires that flows occur in circuits. In our prob-

lem a circuit can be interpreted as a route. For that

reason, they call this a route generator model. Now, cir-

cuit length and aircraft capacity are excluded from this

formulation, so the resulting solution, which they decom-

pose into new routes that have no arcs exceeding aircraft

capacity, is not feasible without the decomposition. How-

ever, decomposition does not eliminate excessive route

length in the process of finding these "nominal" routes.

To do this, they ask planners to consider the nominal

* routes generated by their route generator model, and revise

them as necessary to create feasible and acceptable routing

alternatives. Undoubtedly, this affords planners the

opportunity to introduce other concerns that cannot be

IV A '
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modeled easily, and use their discrimination and ability to

eliminate alternatives that the mathematical model cannot.

With these revised routes as candidates, they then

solve the fixed charge problem, with an important change.

Instead of allowing all arcs in the networks to be candi-

dates for inclusion in the network, they restrict the arc

set to those in the candidate route set. In fact, their

route selector model replaces the fixed charge portion of

the objective (6.18) with the expression

CM,

where v, is a binary variable representing the inclusion or

exclusion of route R1. By adding the expression

N (6.24)
X k _5 U i.

jER k=

they force the variable vi to assume a value of 1 if the

route is used. In other words, they choose entire routes,

and not individual arcs, in this second phase, finding the

optimal set of routes that produces the lowest possible

* combination of routing and patient flow costs.

-There are a number of features that are important to

the aeromedical problem. First, the explicit incorporation

> of both measures of performance is in keeping with our

original goal to satisfy the needs of two client groups.

Secondly, it resolves the problem of patient identity that

the assignment formulation could not. Third, in their

4 .-
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-, approach, planners intervene to revise the nominal routes

before final route selection, which removes the "veto-only"

arrangement for which Mason criticizes many LP decision

models. And, they include several other constraints, such

as cycling through a home base, that are in our

specifications in Chapter III.

To see how we might modify their model to solve the

aeromedical weekly routing problem, consider the following

depiction. Here we have included the depots, denoted by

triangles, as the beginning and ending points of routes

through the demand points for a day. The arc between them,

Day 1 Day 2

Day I Day 2

. Dean / " 3 Demand 3

A Nodes Nodes

ZL44

Figure 6.4. Two-period patient service.kI
* across the line separating the days, represents the staging

facilities, and the upper bound UI on that arc would be the
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ASF capacity. The nodes labeled A are a special commodity:

the aircraft. Using this artifice, we can vary the supply

of aircraft for the week, and also each day, by including

an aircraft arc between each ASF node. By specifying that

all aircraft arcs between ASF's over the end of a day

belong to a bundle constraint, we can also impose daily

availability limits. The arc from the first copy of ASF 1

on day 1 to the corresponding node in the second day repre-

sents an aircraft not used.

Our contribution to the eventual solution of this model

* is a specialized route generator. As Figure 6.4 implies,

multi-period problems are nearly separable into a series of

single day subproblems, linked by deferments, flows through

the staging facilities at night, and aircraft availability.

The object of routing is to both minimize aircraft travel

(which also reduces patient travel time in some instances)

and aggregate patient travel time. With deferment weights

large relative to the elapsed time of same-day delivery,

the best route set should provide complete service to the

* largest possible number of patients, over the shortest

feasible route set.

Ali et al (ALI 811 use a route generator that attempts

to greatly reduce the number of candidate arcs by allowing

only five arcs to be incident out of a node. Depot nodes

completely interconnected. The routes generated by the

multicommodity flow and circuit decomposition routines

V.

0
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produce routes that are feasible in flows, but possibly

infeasible in route length. We have developed an altern-

ative method that produces routes that are minimum in arc

length, no longer than the maximum number of segments, and

easily adapted to planner interaction and participation.

The essence of our procedure is merge a heuristic set

partitioning technique developed by Cullen, Jarvis and

Ratliff [CULL81] with our SVMRP algorithm and other

techniques for generating the routes in the object set.

Any routes, including those generated by Ali et al vector-

circuit decomposition, can be columns in the set parti-

tioning model, which is given as follows. Find a set of

routes jk = {jlvjk=l}, called a partition, that will

rz (6.25)
Minim-e N c u

J=I

n (6.26)
subject to: "j V 1,i,.

j= 1

-I E {0,1 , (6.27)

* where m is the number of movement origin-destination (O-D)

pairs, n the number of routes, and aiJ = 1 if both points

in O-D pair i are in route j. The solution Vk

0 (vlv 2,...Vn)} is the vector of binary variables in which vi

is one if it is in the partition, and 0 otherwise. Cullen
et al define row prices pk (p . . . , k )

et ~ 2 '"Pm )as afeasible

row price (dual variable) vector for the m demand

constraints of the partition Jk if
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kjEJ . (6.28)
I

They interpret pik as the estimated cost of serving O-D I

pair i. They then prove that for some partition J1 and

price vector P', any other partition j2 has value

Z 2  Z - I- L (P a -c). (6.29)

jE jk =

The solution Vl is optimum if for any P1, and partition J1,

\ (pka - ) 0, jEJ1, (6.30)
t=1

the quantity they call the potential savings over Z' that

would result from using another partition that includes

column j. Of course, only columns with nonnegative savings

would be included in the new partition.

There are three basic procedures in the partitioning

technique. The first is row pricing. A feasible starting

route set can be generated by finding the shortest route to

serve each O-D pair separately. To do this assign the

closest depot to the origin first, then the origin. If the

distance between origin and destination is beyond the

maximum range of the aircraft, then find the shortest path

from the origin to the destination via depots only. Other-

wise, use the great circle distance. Then, assign the

destination and the closest depot to it. The rationale for

the shortest path via depots is that route subsets that end

at depots provide incomplete, but feasible, service.

.4 4
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To find a price vector for routes in a new partition

that contain several multiple O-D pairs, use the following

proportional pricing scheme. Suppose route R8 with length

c8 serves patients 1, 3, and 4. Single patient routes cost

c 1 , c3 and c4. Observing that

C3  C C1 ICA C3CS 4 C (6.31)

(('I +  C3 C4) I t r3 +C4 (cl+ C3 +C4) (CI+ C3 1C4 )

let the three terms on the right hand side be plk, p 3k, and

P 4 ' respectively.

* Pricing is necessary whenever a new partition is found,

which is accomplished as follows:

Step 0: Let j2 = 0 (j2 will be the indices of
columns in the new partition) and
N=(l,2,.. .,n), (N will be the indices of
columns which are candidates for

inclusion in j2 )

Step 1: Calculate the potential savings (6.30) for

j=l,2,...,n.

4 Step 2: Pick the column k in N with the largest
potential savings.

Step 3: For i=l,2,...,n if aik = 1 set aik = 0 for

* all j * k. Note ... that since any sub-
route of a feasible route is also a feasi-
ble route, the new columns are legitimate.

Step 4: Let j 2 = j2(j{k} (i.e., put column k in the
* new partition) and N = N - (k}.

Step 5: Delete from N all j for which aij = 0 for~all i+l,2,...,m.

Step 5: If N = Ostop. Otherwise go to step 2.
[CULL81,p.128]

A

--0 . I , / . ..,...... .. . . .. . . . . . . .
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This procedure can create new routes by eliminating one or

more demand pairs from an existing column (route).

Rather than use a heuristic such as Clafke-Wright to

find the routes and route costs cj, we employ the SVMRP

algorithm for both intraregional and interregional sets of

O-D pairs. With a current price vector and costs cj, the

heuristic partitioning procedure finds a new partition, if

the current one is not optimal. The pricing procedure is

then run, and the process continues until optimality is

reached, a specified number of partitions is generated, or

some other stopping condition is met.

Route generation involves several procedures. The

first finds the single patient routes with which to create

the first feaible row price vector. SVMRP is then called

to combine all points with origins and destinations in the

same regions into intraregional tours and interregional

V paths. Next we find instances where the origins and dest-

inations of interregional O-D pairs can be served by intra-

* regional routes, and where routes can be concatenated

(joined) without exceeding maximum allowable route length.

Finally, in roughly 20 per cent of the demand pairs, we

* observed two routes, e.g., ADW ==> PVD ==> ADW and ADW =>

PVD ==> ORF ==> ADW, wnere one route subsumes the other.

Typical performance of this procedure is to generate a

feasible route set of 6-7 routes that will provide 80 per

.
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A cent complete service for 75 demand pairs, and over 90 per

cpn complete service for 40 pairs or less. On weekends,

when tne demand is usually under 30 pairs, and when most

originations are overseas patients being moved to hospitals

in the US from either Travis or Andrews Air Force Base, the

route set satisfies all demands. As a final note, we

speculate that good initial routes will provide the

resource-directive multicommodity algorithm with an

advanced starting basis that will improve the algorithm's

oerformance.

This procedure has worked well enough to warrant

further tests and extensions that bring planners into the

- route generation and selection process. Cullen et al

suggest that the combination of computer-generated graphics

displays and route planner interaction improves the quality

of routes generated, and perhaps more importantly,

increases planner involvement. , As we discussed earlier,

the <rganization currently lacks the necessary computing

equipment for this.

The use of the multicommodity fixed charge network flow

apprsach will require further developments of fixed charge

* algorithms. Until that time, we can run the multicommodity

problem with a fixed route st icture given by our routing

procedure. A parallel research effort by Kennington, to

* soive the wartime patient transportation problem, is

currently developing a resource-directive decomposition

U. I
Ze
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technique to solve the multicommodity flow problem.

Recalling that each of the 54 commodities (patients with

the same destination) compete for aircraft capacity, that

- resource is allocated by the master problem so that (1)

solutions are feasible in arc capacity and (2) the

% subproblems are pure minimum cost network flow problems

that can be solved efficiently.

Our collaborative efforts with Dr Kennington involve

another potentially significant factor in eventually

'N solving the route selection problem optimally. the use of

* supercomputer processing speed, vector processing capa-

bility, and large core capacity. Problem size has been

severely limited and computation times excessive in

previous efforts involving even moderate size problems.

The multicommodity fixed charge algorithm took 23 hours of

cpu time, without reaching optimality, on a 60-node problem

roughly equivalent to a single day aeromedical planning

problem. The CRAY-lS on which our routing procedures were

run, and the Control Data Corporation CYBERNET CYBER 205,

0 on which both Kennington's resource-directive procedure and

our routing model will be run, are faster by several orders

of magnitude than the CYBER 73 on which Kennington ran the

LOGAIR problem. And, he reports in a private communication

that his experimental resource-directive code is dramat-

ically faster than both primal partitioning and price-

S-: directive codes, for small numbers of commodities.

0
t
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technique to solve the multicommodity flow problem.

Recalling that each of the 54 commodities (patients with

the same destination) compete for aircraft capacity, that

VSW resource is allocated by the master problem so that (1)

solutions are feasible in arc capacity and (2) the

subproblems are pure minimum cost network flow problems

that can be solved efficiently.

Our collaborative efforts with Dr Kennington involve

another potentially significant factor in eventually

solving the route selection problem optimally: the use of

* supercomputer processing speed, vector processing capa-

bility, and large core capacity. Problem size has been

severely limited and computation times excessive in

previous efforts involving even moderate size problems.

The multicommodity fixed charge algorithm took 23 hours of
'.

cpu time, without reaching optimality, on a 60-node problem

roughly equivalent to a single day aeromedical planning

problem. The CRAY-lS on which our routing procedures were

run, and the Control Data Corporation CYBERNET CYBER 205,

0, on which both Kennington's resource-directive procedure and

our routing model will be run, are faster by several orders

of magnitude than the CYBER 73 on which Kennington ran the

LOGAIR problem. And, he reports in a private communication

that his experimental resource-directive code is dramat-

ically faster than both primal partitioning and price-

directive codes, for small numbers of commodities.

So.
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6.4 Results and Conclusions. In this chapter we have form-

uiated the full aeromedical planning model to include addi-

tional complications caused by partial service, regional

transfers, and routing and aircraft operating limits. The

1ccultU49 model cinnct be olved by the assignment tech-

niques used in the first three versions because the iden-

tity of patients is lost when they must be served by more

than one mission. A fixed charge linear multicommodity

minimum cost network flow formulation incorporates both

patient flow and aircraft routing problem characteristics,

*but existing solution methods cannot solve programs as

*..... large as wee!:Jy aeromedical planning problem.

The approach taken by Ali et al, to first generate

Feasible route sets, and use those routes to find the

optimum network design and patient flow, appears the most

promising. Our contribution to eventually solving the full

problem optimally is to incorporate our single vehicle

many-to-many routing model into a set partitioning model

that generates good and even optimal route partitions, and

good advanced starting bases. With further refinements of

this tecnnique, and the estimate that a large-scale

resource-directive code will be available within one year,

i~i-lie prospects for complete solution of the weekly schedu-

ling problem appear excellent.

0



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

In the thesis we have examined the design of a planning

system for the US Department of Defense aeromedical trans-

portation system. We have found that that system is both

complex in its own right, and yet is still only part of a

much larger health care delivery system serving several

million beneficiaries. We have been primarily interested

on two aspects of the planning system, the planning

decisions that must be made and the information required to

make them. Our approach was to devise a framework that

would incorporate both concerns, and then attempt to con-

struct the actual planning mechanism within that framework.

* And attempt we did, as we discovered that our ideal of a

developing a planning system that would produce optimal

decisions for using the system's resources to the best

advantage of its clients was ultimately unattainable. How-

ever, we also learned something about why that happened,

and what is needed to overcome the problems we encountered.

With the research currently underway, the prospects are

good for resolving them. In the process, we did achieve a

number of goals, and we observed a number -f areas that
S

warrant further attention.

We first examined the philosophical and epistemological

* nature of planning systems. Our basic conclusion was that

there is no scientific foundation for the selection of any
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particular framework for planning system design. Any

choice depends upon many strong systemic judgements.

Perhaps most importantly, we concluded that our two most

important concerns should be what we eventually wanted to

implement, in terms of improving the condition of the

clients the system serves, and how to guarantee that

improvement actually results, and that disaster does not.

The unavoidable conclusion is that the system's guarantor

must always be its own participants, its planners, decision

makers, and clients, whose intentions are perhaps th2 most

crucial aspect of the whole system.

We chose as the principal clients the patients the

system moves between medical facilities, and the public who

provide the resources and share in the benefits of the

system's performance. We first examined the larger Mili-

%. tary Health Services System, and how it provided health

care to its beneficiaries. As a number of studies have

shown, its convoluted structure and lack of explicit health

.benefit program assignments created a number of problems

* that the transportation system has to contend with,

including such things as a strong same-service bias in

treatment referrals. We found its most significant

O- shortcomings when we attempted to design an ideal structure

for health care delivery within which the transportation

subsystem would operate. Patients can be treated under a

* variety of alternative programs, and there is almost a

_ 'I
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universal lack of adequate data on care costs, beneficiary

identification and other data critical to assessing care

alternatives, including transportation. The system has

been examined critically for ways to improve it, but

unforLunately most previous efforts have utilized an

efficiency approach in which cost reduction is the

principal (or only) measure and benefits are either not

calculated or simply ignored.

We also looked at the impact of the two major roles of

the system and the way they both conflict with and

complement each other. One of the principal missions of

the aeromedical system is wartime casualty distribution

from battlefield to hospitals, including those in the US.

Budget support for the whole program is based upon wartime

- training, and yet the domestic system has never operated in

its wartime role, beyond exercise and rehearsal, since

World War II, and the principal measures of performance

used by system managers are expressed in terms of peacetime

performance. Many of the reasons for patient travel are

directly attributable to differencesin the two roles.

After examining the system in terms of the nine cate-

* gories devised by Churchman to describe and explain sys-

% 1tems, we then used historical data to better understand howpatients are transported by the system. We used statis-

* tical factor analysis techniques to extract significant

S.. structural properties of patient flows and the aircraft



0 409

route structure. The dominance of intraregional sub-system

patient flows and flows into and between a few major

medical centers was clearly evident. Also evident was the

relative concentration of demands on certain days of the

week, such that on most days, more stops would be required

to provide complete service to all patients than the system

can make. This directly causes the intractable problems we

described in the last chapter.

We then examined mathematical programming methods that

incorporate movement characteristics such as multiple time

* periods and regionalized structure. One technique, the use

of resource direction in decomposing large mathematical

models, allows us to incorporate temporal and structural

features, and provides a framework for integrating infor-

mation flows and decisions. Resources are allocated to

decomposed portions of the whole problem, say to a time

period, a patient category, or regional unit, and the

.-smaller problem is solved. These solutions, along with

prices giving the value of the resources allocated, are

• returned to the central coordinating program, which uses

that information to improve the resource allocation.

We then examined the basic routing problem and

developed a series of increasingly more complex routing

decision models. The first of these, the single vehicle,

many-to-many routing algorithm, solves the problem of

routing a single aircraft to serve patients with both

-' %5 7 - ' . 5
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origins and destinations. The SVMRP algorithm will solve

pr'blems larger than those developed for dial-a-ride appli-

cations, but does not handle time windows. Origins and

destinations need not be unique, and the depot may be

either an origin, a destination, or both. The assignment-

based formulation we used seems quite efficient,

particularly when compared with traveling salesman problems

(to which it is related) of comparable size.

S  ~ We then extended the single depot, single aircraft

model to allow multiple aircraft, multiple depots, and

origin-to-destination service requirements. The extension

" was relatively straightforward. The MDMVMRP model is of

limited use in problems where the movement demands are not

strongly or entirely intraregional. Also, maximum problem

size is limited currently to 50 stops or less; increasing

that limit should be the subject of future research.

Finally, we added the additional complications of par-

tiai service, interregional transfers, and aircraft oper-

* ating restrictions, such as maximum stops per mission, max-

:mum periods without visitng the central base, and starting

and ending points at staging facility bases only. We

* immediately discovered that our assignment-based formula-

* tion could not be extended, but rather had to be used for

generating routes for the fixed charge multicommodity

*1 minimum cost network flow formulation of the Version IV

model. Current state-of-the art in resource-directive

0
= 'I 1 10 "1 1 t
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methods for solving the flow model will not handle entire
'V

weekly aeromedical planning problems, but current algorithm

research indicates that with supercomputer processing speed

and capacity, problem size limits can be expected to

increase significantly very soon. Our route generator

model provides good solutions to weekly problems, and an

advanced starting basis for the flow model.

We have a number of recommendations for improving the

planning process through the adoption of better planningAi
technologies. In some cases, lack of data is a major prob-

* lem. But in others, particularly in flight planning, lack

of integrated data sources on weather, airfields, air route

structures, navigation aids, and aircraft performance, not

a lack of data, means that for all the data available, it

cannot be directly accessed by computer-based planning

" models. A significant portion of Air Force and DOD plan-

ning data, for example, is only available in hard copy.

*Despite extensive patient data collection, there is

remarkably little use made of it for modeling patient move-S
ment. In addition to adopting the factor-analytic tech-

niques we used, the wing should strongly consider using

logit analysis with diagnostic data and other techniques to

obtain insights and into and perhaps even predict movement

workloads and trends. Better historical movement records

V. that include more than just final transactions would be

particularly useful. Another posible use of movement data

4k?
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ic to determine if and how patient regulation could be

improved. As we noted in an example, the destination

choices made by movement regulators directly determine the

of movement structure. This is an important area for

future research.

We identified a number of technical issues in the

development of the various versions of the route planning

model that future research should address. We identified

V two measures of performance, network design costs (aircraft

operating cost over network arcs) and flow costs (patient

* travel time). We were able to include them both only by

- creating a composite objective. Recent advances in mult-

iple objective mathematical programming may permit the

simultaneous consideration of separate objectives.

One needed extension to the routing model is to be able

to handle dynamic demands. Our model builds routes based

on advance requests. A significant number of urgent cate-

gory patients require immediate movement, which requires

*the wing to either launch an unscheduled airplane or

reroute one already assigned to a route. Dial-A-Ride

solution methods of handling time windows, a problem that

*aeromedical planners sometimes encounter, should also be

examined for possible inclusion in the routing model.

In our discussion of system objectives, we observed

that one of the benefits of adopting effective planning
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models is that in wartime, when we would expect movement

V" requirements to be extremely high and time frames greatly

compressed, sophisticated methods would be need to effec-

tively utilize the system's resources. A very important

question is whether routing methods that are effective in

peacetime are effective or even appropriate for wartime

planning. It is not clear, from current research in this

area, what the wartime movement problem might even be like.

Finally, in the true spirit of ideal planning, there

are a number of "givens" that should be challenged. Fixed

* fleet size, budgets and routing structures are the most

salient. Another, the regulation process, which we have

already mentioned, is sequential; first doctors, then

transportation coordinators, then regulators, and then

finally medical and flight planners decide if, where and

how the patient should be moved. (The most important

planner, the patient, is not involved after the first

step.) By sequential we mean that once the decision at a

particular step is made, subsequent steps do not challenge

it. The problem is one of world views that do not confront

each other. The concept is somewhat alien to military

organization, particularly when one organization is subord-

i nate to another. The important question is not "Should

we?", but "Can we afford not to?".

'

01
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